44 research outputs found

    Sarcopenia in Children With End-Stage Liver Disease on the Transplant Waiting List

    Get PDF
    Sarcopenia predicts morbidity and mortality in adults with end-stage liver disease (ESLD) and is determined by total psoas muscle area (tPMA) measurement from computed tomography (CT) imaging. Recently developed pediatric age- and sex-specific tPMA growth curves provide the opportunity to ascertain prevalence and impact of sarcopenia in children awaiting liver transplantation (LT). This retrospective single-center study evaluated sarcopenia in children between 1 and 16 years with ESLD and a clinically indicated abdominal CT less than 3 months before first isolated LT. Sarcopenia was defined as tPMA z score less than −2 measured at the intervertebral L4-5 level. Patient demographic, biochemical, and outcome data were recorded. tPMA was compared with other measures of nutritional status using univariate and multivariate logistic analyses. Outcome measures included 1-year morbidity events and mortality after LT. CT images from 25 (64% female) children with median age of 5.50 (interquartile range [IQR], 3.75-11.33) years were reviewed. Ten children (40%) had a tPMA z score less than −2. Sarcopenia was associated with lower z scores for weight (odds ratio [OR], 0.38; P = 0.02), height (OR, 0.32; P = 0.03), and nutritional support before LT (OR, 12.93; P = 0.01). Sarcopenic children had a longer duration of pediatric intensive care unit (PICU) stay (3.50 [IQR, 3.00-6.00] versus 2.00 [IQR, 2.00-3.50] days; P = 0.03). Sarcopenia was prevalent in 40% of children with ESLD awaiting LT, and lower tPMA z score was associated with deficient anthropometrics and need for nutritional support before LT. Post-LT PICU duration was increased in children with sarcopenia, reflecting adverse outcomes associated with muscle loss. Further studies are needed to elucidate the underlying mechanisms of sarcopenia in children with ESLD

    Qualitative Release Assessment to Estimate the Likelihood of Henipavirus Entering the United Kingdom

    Get PDF
    The genus Henipavirus includes Hendra virus (HeV) and Nipah virus (NiV), for which fruit bats (particularly those of the genus Pteropus) are considered to be the wildlife reservoir. The recognition of henipaviruses occurring across a wider geographic and host range suggests the possibility of the virus entering the United Kingdom (UK). To estimate the likelihood of henipaviruses entering the UK, a qualitative release assessment was undertaken. To facilitate the release assessment, the world was divided into four zones according to location of outbreaks of henipaviruses, isolation of henipaviruses, proximity to other countries where incidents of henipaviruses have occurred and the distribution of Pteropus spp. fruit bats. From this release assessment, the key findings are that the importation of fruit from Zone 1 and 2 and bat bushmeat from Zone 1 each have a Low annual probability of release of henipaviruses into the UK. Similarly, the importation of bat meat from Zone 2, horses and companion animals from Zone 1 and people travelling from Zone 1 and entering the UK was estimated to pose a Very Low probability of release. The annual probability of release for all other release routes was assessed to be Negligible. It is recommended that the release assessment be periodically re-assessed to reflect changes in knowledge and circumstances over time

    ADDovenom: Thermostable Protein-Based ADDomer Nanoparticles as New Therapeutics for Snakebite Envenoming

    Get PDF
    Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom—polyclonal antibodies isolated from the plasma of hyperimmunised animals—which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Association of malnutrition in peritoneal dialysis patients of Saudi Arabia

    Get PDF
    Malnutrition is highly prevalent in dialysis patients, and a major contributor to morbidity and mortality. We have investigated the inter-relationship between malnutrition and its impact on morbidity and mortality in peritoneal dialysis (PD) patients. We enrolled 60 PD patients, and measured C-reactive protein (CRP) and various nutritional markers, including pre-albumin. Patients were classified into two groups according to the albumin level since albumin is a good marker of nutrition condition: Group I (n = 32) patients with normal albumin (NAP) where the albumin level was above or equal to 35 g/L and Group II (n = 28) patients with low albumin level (LAP) less than 35 g/L. The level (mean ± SD) of blood urea nitrogen was significantly high (p < 0.05) in NAP group (19.9 ± 5.76 mmol/L) compared with LAP group (15.9 ± 6.32 mmol/L). Data showed that, the mean of creatinine was significantly high (p < 0.01) in NAP group (921 μmol/L) compared with LAP group (584 μmol/L) (Table 2). There was a trend toward association of elevated CRP with all-cause mortality in PD patients. It is useful to incorporate albumin and CRP in the regular assessment of PD patients, whose survival may be improved by better management of malnutrition

    Molecular cloning of a hyaluronidase fromBothrops pauloensisvenom gland

    Get PDF
    Background Hyaluronate is one of the major components of extracellular matrix from vertebrates whose breakdown is catalyzed by the enzyme hyaluronidase. These enzymes are widely described in snake venoms, in which they facilitate the spreading of the main toxins in the victim’s body during the envenoming. Snake venoms also present some variants (hyaluronidases-like substances) that are probably originated by alternative splicing, even though their relevance in envenomation is still under investigation. Hyaluronidases-like proteins have not yet been purified from any snake venom, but the cDNA that encodes these toxins was already identified in snake venom glands by transcriptomic analysis. Herein, we report the cloning and in silicoanalysis of the first hyaluronidase-like proteins from a Brazilian snake venom.Methods The cDNA sequence of hyaluronidase was cloned from the transcriptome of Bothrops pauloensisvenom glands. This sequence was submitted to multiple alignment with other related sequences by ClustalW. A phylogenetic analysis was performed using MEGA 4 software by the neighbor joining (NJ) method.Results The cDNA from Bothrops pauloensis venom gland that corresponds to hyaluronidase comprises 1175 bp and codifies a protein containing 194 amino acid residues. The sequence, denominated BpHyase, was identified as hyaluronidase-like since it shows high sequence identities (above 83%) with other described snake venom hyaluronidase-like sequences. Hyaluronidases-like proteins are thought to be products of alternative splicing implicated in deletions of central amino acids, including the catalytic residues. Structure-based sequence alignment of BpHyase to human hyaluronidase hHyal-1 demonstrates a loss of some key secondary structures. The phylogenetic analysis indicates an independent evolution of BpHyal when compared to other hyaluronidases. However, these toxins might share a common ancestor, thus suggesting a broad hyaluronidase-like distribution among venomous snakes.Conclusions This work is the first report of a cDNA sequence of hyaluronidase from Brazilian snake venoms. Moreover, the in silico analysis of its deduced amino acid sequence opens new perspectives about the biological function of hyaluronidases-like proteins and may direct further studies comprising their isolation and/or recombinant production, as well as their structural and functional characterization
    corecore