53 research outputs found

    Integrated Management of Fusarium Wilt Diseases

    Get PDF
    The integrated management concept is one of the fundamental paradigms that have emerged in crop protection in the last 50 yrs and yet a matter for legislation as exemplified by the European Union that recently has establishes the integrated management as the fundamental procedure for the management of crop diseases, pests and weeds. However, the integrated management is not a panacea for the control of plant diseases. It is an ecology-based approach aiming minimizing damage caused by diseases through ‘the combined use of all available disease control measures, either simultaneously or in a sequence, through actions taken prior and after establishing the crop’. In this chapter, we propose and develop a strategy for the integrated management for Fusarium wilts, one of the most devastating and challenging type of diseases impairing agricultural production worldwide,, based on the: (i) use of pathogen-free planting material; (ii) site selection to avoid planting into high risk soils; (iii) reduction or elimination of F. oxysporum inoculum in soil; (iv) use of biocontrol agents for protection of healthy planting material from infection by resident or incoming inoculum subsequent to planting; (v) use of resistant cultivars regardless the level of resistance; and (vi) choice of cropping practices to avoid conditions favouring infection of the plant. The integrated management of Fusarium wilt diseases is difficult because complexities of target pathosystems are overlaid on the inherent complexities of the management strategy itself. Much research is still needed on population biology and genetic diversity in Fusarium wilt pathogens, disease risk prediction, disease-incidence-yield losses relationships, biological control, biotechnological breeding for disease resistance. On top of difficulties pointed out above, the practice of integrated management requires involvement of well-trained professional plant pathologists able to implement the tenets of the concept at the local level, as well as to incorporate into decision-making framework new knowledge and technologies that may be developed from scientific research. As the demand has increased for knowledgeable practitioners capable of integrating multifaceted controls in rigorous IDM programs, institutional support has declined through declining or even vanishing University education in Plant Pathology and the loss of extension-related activities in commercial agriculture. Erosion at the top of the trickle-down structure responsible for knowledge transfer to the field is one of the most serious threats to IDM

    The Fusarium oxysporum f. sp. ciceris/Cicer arietinum pathosystem: a case study of the evolution of plantpathogenic fungi into races and pathotypes

    Get PDF
    The use of resistant cultivars is one of the most practical and costefficient strategies for managing plant diseases. However, the efficiency of resistant cultivars in disease management is limited by pathogenic variability in pathogen populations. Knowledge of the evolutionary history and potential of the pathogen population may help to optimize the management of disease-resistance genes, irrespective of the breeding strategy used for their development. In this review, we examine the diversity in virulence phenotypes of Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpeas, analyze the genetic variability existing within and among those phenotypes, and infer a phylogenetic relationship among the eight known pathogenic races of this fungus. The inferred intraspecific phylogeny shows that each of those races forms a monophyletic lineage. Moreover, virulence of races to resistant chickpea cultivars has been acquired in a simple stepwise pattern, with few parallel gains or losses. Although chickpea cultivars resistant to Fusarium wilt are available, they have not yet been extensively deployed, so that the stepwise acquisition of virulence is still clearly evident. [Int Microbiol 2004; 7(2):95–104

    Identification of pathogenic races 0, 1B/C, 5 and 6 of fusarium oxysporum f. sp. ciceris with random amplified polymorphic DNA

    Get PDF
    Abstract Ninety-nine isolates of Fusarium oxysporum f. sp. ciceris (Foc), representative of the two pathotypes (yellowing and wilt) and the eight races described (races 0, 1A, 1B/C, 2, 3, 4, 5, and 6), were used in this study. Sixty isolates were analyzed by the RAPD technique using DNA bulks for each race and 40 primers. Bands presumably specific for a DNA bulk were identified and this specificity was confirmed by further RAPD analysis of individual isolates in each DNA bulk. Primers OPI-09, OPI-18, OPF-06, OPF-10, and OPF-12 generated RAPD marker bands for races 0, 1B/C, 2, 3, 4, 5, and 6. The reliability and utility of this procedure was validated in 'blind trials' using 39 new Foc isolates. Ten of the 39 isolates had already been typed to race by pathogenicity tests and 29 were typed both by pathogenicity and RAPD testing in this study. In these 'blind trials', we assigned the 39 new isolates to a race solely on the basis of their RAPD haplotype. Thus, we concluded that Foc races 0, 1B/C, 5, and 6 can be characterized by the RAPD markers. Cluster analysis of the RAPD data set resulted in three clusters of isolates within Foc. The yellowing isolates were grouped in two distinct clusters which correspond to races 0 and 1B/C. The wilt isolates constitute a third cluster that included races 1A, 2, 3, 4, 5, and 6. These results provide a means of studying the distribution of Foc races, to assist in the early detection of introduced race(s) and to facilitate the efficient deployment of available host resistance

    Complex molecular relationship between vegetative compatibility groups (VCGs) in Verticillium dahliae: VCGs do not always align with clonal lineages

    Full text link
    Verticillium wilts caused by the soilborne fungus Verticillium dahliae are among the most challenging diseases to control. Populations of this pathogen have been traditionally studied by means of vegetative compatibility groups (VCGs) under the assumption that VCGs comprise genetically related isolates that correlate with clonal lineages. We aimed to resolve the phylogenetic relationships among VCGs and their subgroups based on sequences of the intergenic spacer region (IGS) of the ribosomal DNA and six anonymous polymorphic sequences containing single-nucleotide polymorphisms (VdSNPs). A collection of 68 V dahliae isolates representing the main VCGs and subgroups (VCGs 1A, 1B, 2A, 2B, 3, 4A, 4B, and 6) from different geographic origins and hosts was analyzed using the seven DNA regions. Maximum parsimony (MP) phylogenies inferred from IGS and VdSNP sequences showed five and six distinct clades, respectively. Phylogenetic analyses of individual and combined data sets indicated that certain VCG subgroups (e.g., VCGs 1A and 1B) are closely related and share a common ancestor; however, other subgroups (e.g., VCG 4B) are more closely related to members of a different VCG (e.g., VCG 2A) than to subgroups of the same VCG (VCG 4B). Furthermore, MP analyses indicated that VCG 2B is polyphyletic, with isolates placed in at least three distinct phylogenetic lineages based on IGS sequences and two lineages based on VdSNP sequences. Results from our study suggest the existence of main VCG lineages that contain VCGs 1A and 1B; VCGs 2A and 4B; and VCG 4A, for which both phylogenies agree; and the existence of other VCGs or VCG subgroups that seem to be genetically heterogeneous or show discrepancies in their phylogenetic placement: VCG 2B, VCG 3, and VCG 6. These results raise important caveats regarding the interpretation of VCG analyses: genetic homogeneity and close evolutionary relationship between members of a VCG should not be assumed.This research was partially funded by the Sarah Chinn Kalser Faculty Research Assistance Endowment, College of Agricultural Sciences, The Pennsylvania State University. We thank all suppliers of V. dahliae isolates; J. Yanez, S. Colihan, C. Barrett, C. Black, and C. Olivares-Garcia for excellent technical support; and D. Geiser for helpful discussions during the preparation of this manuscript.Jiménez Gasco, MDM.; Malcolm, GM.; Berbegal Martinez, M.; Armengol Fortí, J.; Jimenez Diaz, R. (2014). Complex molecular relationship between vegetative compatibility groups (VCGs) in Verticillium dahliae: VCGs do not always align with clonal lineages. Phytopathology. 104(6):650-659. doi:10.1094/PHYTO-07-13-0180-RS650659104

    Aplicaciones de metodologías moleculares y biotecnológicas en la investigación sobre las enfermedades de cultivos en la Agricultura Sostenible

    Get PDF
    Las enfermedades son un componente de significación en la producción agrícola actual porque pueden reducir el rendimiento potencial o causar devastación en los cultivos de plantas; y la extensión y severidad de sus ataques va unida a los cambios que se están produciendo en los sistemas de manejo que dan lugar a mejoras en el rendimiento o modificaciones en los ambientes de producción. El control eficiente de las enfermedades requiere necesariamente la determinación exacta, rápida e informativa de su etiología, incluyendo la evaluación de la historia y potencial evolutivo en las poblaciones del agente causal, así como de la composición y diversidad de la microbiota beneficiosa asociada con el crecimiento vegetal, que hagan posible la aplicación eficiente de las acciones de prevención en que se fundamenta el manejo sostenible de dichas enfermedades. Las tecnologías de base molecular y biotecnológica ofrecen una excelente oportunidad para mejorar nuestras capacidades para satisfacer dichos requisitos. En este trabajo se ilustran tales oportunidades utilizando como ejemplo los resultados alcanzados por el Grupo AGR136 ‘Sanidad Vegetal’ durante el desarrollo de programa de investigación llevados a cabo sobre enfermedades importantes en la agricultura andaluz

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    Management of Soil-Borne Diseases of Grain Legumes Through Broad-Spectrum Actinomycetes Having Plant Growth-Promoting and Biocontrol Traits

    Get PDF
    Chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.) are the two important grain legumes grown extensively in the semiarid tropics (SAT) of the world, where soils are poor in nutrients and receive inadequate/erratic rainfall. SAT regions are commonly found in Africa, Australia, and South Asia. Chickpea and pigeonpea suffer from about 38 pathogens that cause soil-borne diseases including wilt, collar rot, dry root rot, damping off, stem canker, and Ascochyta/Phytophthora blight, and of which three of them, wilt, collar rot, and dry root rot, are important in SAT regions. Management of these soil-borne diseases are hard, as no one control measure is completely effective. Advanced/delayed sowing date, solarization of soil, and use of fungicides are some of the control measures usually employed for these diseases but with little success. The use of disease-resistant cultivar is the best efficient and economical control measure, but it is not available for most of the soil-borne diseases. Biocontrol of soil-borne plant pathogens has been managed using antagonistic actinobacteria, bacteria, and fungi. Actinobacterial strains of Streptomyces, Amycolatopsis, Micromonospora, Frankia, and Nocardia were reported to exert effective control on soil-borne pathogens and help the host plants to mobilize and acquire macro- and micronutrients. Such novel actinomycetes with wide range of plant growth-promoting (PGP) and antagonistic traits need to be exploited for sustainable agriculture. This chapter gives a comprehensive analysis of important soil-borne diseases of chickpea and pigeonpea and how broad-spectrum actinomycetes, particularly Streptomyces spp., could be exploited for managing them

    El patosistema Fusarium oxysporum f. sp. ciceris/Cicer arietinum: un modelo de la evolución de los hongos patógenos de plantas en razas y patotipos

    No full text
    The use of resistant cultivars is one of the most practical and costefficient strategies for managing plant diseases. However, the efficiency of resistant cultivars in disease management is limited by pathogenic variability in pathogen populations. Knowledge of the evolutionary history and potential of the pathogen population may help to optimize the management of disease-resistance genes, irrespective of the breeding strategy used for their development. In this review, we examine the diversity in virulence phenotypes of Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpeas, analyze the genetic variability existing within and among those phenotypes, and infer a phylogenetic relationship among the eight known pathogenic races of this fungus. The inferred intraspecific phylogeny shows that each of those races forms a monophyletic lineage. Moreover, virulence of races to resistant chickpea cultivars has been acquired in a simple stepwise pattern, with few parallel gains or losses. Although chickpea cultivars resistant to Fusarium wilt are available, they have not yet been extensively deployed, so that the stepwise acquisition of virulence is still clearly evident.La utilización de cultivares resistentes es una de las estrategias más prácticas y económicas para el control de las enfermedades de las plantas. No obstante, la eficiencia de los cultivares resistentes en dicho control está limitada por la variabilidad patogénica en las poblaciones de los patógenos. El conocimiento de la historia y el potencial evolutivo de las poblaciones de los patógenos puede ayudarnos a optimizar el uso de los genes de resistencia contra enfermedades, independientemente de la estrategia de mejora genética del huésped empleada para su desarrollo. En esta revisión examinamos la diversidad de los fenotipos de virulencia en Fusarium oxysporum f. sp. ciceris, el agente causal de la Fusariosis vascular del garbanzo, analizamos la variabilidad genética intra- e interfenotípica, e inferimos la relación filogenética existente entre las ocho razas patógénicas conocidas de este hongo. La filogenia intraespecífica inferida muestra que cada una de estas ocho razas constituye un linaje monofilético. Además, las razas virulentas sobre los cultivares resistentes de garbanzo han adquirido esta capacidad según un modelo gradual simple, con pocas ganancias o pérdidas paralelas de virulencia. A pesar de que existen cultivares de garbanzo resistentes a la Fusariosis vascular, la utilización restringida de ellas realizada hasta ahora permite que la adquisición gradual de virulencia sea aún claramente perceptible.Research on Fusarium wilt of chickpeas in RMJD laboratory was supported by grants AGF97-1479 and AGF98-0878 from Comisión Interministerial de Ciencia y Tecnología (CICYT) of Spain.Peer reviewe
    corecore