1,864 research outputs found

    Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform

    Full text link
    Motivation The Burrows-Wheeler transform (BWT) is the foundation of many algorithms for compression and indexing of text data, but the cost of computing the BWT of very large string collections has prevented these techniques from being widely applied to the large sets of sequences often encountered as the outcome of DNA sequencing experiments. In previous work, we presented a novel algorithm that allows the BWT of human genome scale data to be computed on very moderate hardware, thus enabling us to investigate the BWT as a tool for the compression of such datasets. Results We first used simulated reads to explore the relationship between the level of compression and the error rate, the length of the reads and the level of sampling of the underlying genome and compare choices of second-stage compression algorithm. We demonstrate that compression may be greatly improved by a particular reordering of the sequences in the collection and give a novel `implicit sorting' strategy that enables these benefits to be realised without the overhead of sorting the reads. With these techniques, a 45x coverage of real human genome sequence data compresses losslessly to under 0.5 bits per base, allowing the 135.3Gbp of sequence to fit into only 8.2Gbytes of space (trimming a small proportion of low-quality bases from the reads improves the compression still further). This is more than 4 times smaller than the size achieved by a standard BWT-based compressor (bzip2) on the untrimmed reads, but an important further advantage of our approach is that it facilitates the building of compressed full text indexes such as the FM-index on large-scale DNA sequence collections.Comment: Version here is as submitted to Bioinformatics and is same as the previously archived version. This submission registers the fact that the advanced access version is now available at http://bioinformatics.oxfordjournals.org/content/early/2012/05/02/bioinformatics.bts173.abstract . Bioinformatics should be considered as the original place of publication of this article, please cite accordingl

    Towards Communication-Efficient Quantum Oblivious Key Distribution

    Get PDF
    Oblivious Transfer, a fundamental problem in the field of secure multi-party computation is defined as follows: A database DB of N bits held by Bob is queried by a user Alice who is interested in the bit DB_b in such a way that (1) Alice learns DB_b and only DB_b and (2) Bob does not learn anything about Alice's choice b. While solutions to this problem in the classical domain rely largely on unproven computational complexity theoretic assumptions, it is also known that perfect solutions that guarantee both database and user privacy are impossible in the quantum domain. Jakobi et al. [Phys. Rev. A, 83(2), 022301, Feb 2011] proposed a protocol for Oblivious Transfer using well known QKD techniques to establish an Oblivious Key to solve this problem. Their solution provided a good degree of database and user privacy (using physical principles like impossibility of perfectly distinguishing non-orthogonal quantum states and the impossibility of superluminal communication) while being loss-resistant and implementable with commercial QKD devices (due to the use of SARG04). However, their Quantum Oblivious Key Distribution (QOKD) protocol requires a communication complexity of O(N log N). Since modern databases can be extremely large, it is important to reduce this communication as much as possible. In this paper, we first suggest a modification of their protocol wherein the number of qubits that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum communication complexity even further in such a way that only a few hundred qubits are needed to be transferred even for very large databases.Comment: 7 page

    Shoulder electromyography activity during push-up variations: a scoping review

    Get PDF
    Background: Push-ups (PU) are a common closed chain exercise used to enhance shoulder girdle stability, with variations that alter the difficulty or target specific muscles. To appropriately select and prescribe PU exercises, an understanding of muscle activity during variations of the PU is needed. The purpose of this scoping review was to identify common PU variations and describe their muscle activation levels. Methods: Databases searched included PubMed, CINAHL, Scopus, and SPORTDiscus for articles published between January 2000 and November 2019. Results: Three hundred three articles were screened for eligibility with 30 articles included in the analysis. Six PU types and five muscles met the criteria for analysis. Weighted mean electromyography (EMG) amplitude was calculated for each muscle across PU types and for each PU type as a measure of global muscle activity. Triceps and pectoralis major had the highest EMG amplitude during unstable, suspension, incline with hands on a ball and the standard PU. Serratus anterior had the highest EMG amplitude during PU plus and incline PU. The greatest global EMG amplitude occurred during unstable surface PU. Discussion: These results provide clinicians with a framework for prescribing PU to target specific muscles and scale exercise difficulty to facilitate rehabilitation outcomes

    Exploring Teacher Perspectives of STEM Outreach Sessions

    Get PDF
    Teachers have a responsibility to create and foster engaging learning environments which encourage underrepresented persons in Science, Technology, Engineering, and Mathematics (STEM). Outreach programs have been shown to increase STEM engagement of students. We use a positive psychology lens to investigate STEM outreach and teacher wellbeing. This exploratory study uses a survey and focus group to assess how a STEM outreach program can create teacher feelings of support, confidence, and enjoyment. Results demonstrate that most teachers felt more confident in teaching STEM following the STEM-mentor facilitated outreach sessions. The positive benefits to teacher wellbeing from outreach program mentorship, is discussed

    Cyclooxygenase 2 promotes cell survival by stimulation of dynein light chain expression and inhibition of neuronal nitric oxide synthase activity

    Get PDF
    Cyclooxygenase 2 (COX-2) inhibits nerve growth factor (NGF) withdrawal apoptosis in differentiated PC12 cells. The inhibition of apoptosis by COX-2 was concomitant with prevention of caspase 3 activation. To understand how COX-2 prevents apoptosis, we used cDNA expression arrays to determine whether COX-2 regulates differential expression of apoptosis-related genes. The expression of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase [PIN]) was significantly stimulated in PC12 cells overexpressing COX-2. The COX-2-dependent stimulation of DLC expression was, at least in part, mediated by prostaglandin E(2). Overexpression of DLC also inhibited NGF withdrawal apoptosis in differentiated PC12 cells. Stimulation of DLC expression resulted in an increased association of DLC/PIN with neuronal nitric oxide synthase (nNOS), thereby reducing nNOS activity. Furthermore, nNOS expression and activity were significantly increased in differentiated PC12 cells after NGF withdrawal. This increased nNOS activity as well as increased nNOS dimer after NGF withdrawal were inhibited by COX-2 or DLC/PIN overexpression. An nNOS inhibitor or a membrane-permeable superoxide dismutase (SOD) mimetic protected differentiated PC12 cells from NGF withdrawal apoptosis. In contrast, NO donors induced apoptosis in differentiated PC12 cells and potentiated apoptosis induced by NGF withdrawal. The protective effects of COX-2 on apoptosis induced by NGF withdrawal were also overcome by NO donors. These findings suggest that COX-2 promotes cell survival by a mechanism linking increased expression of prosurvival genes coupled to inhibition of NO- and superoxide-mediated apoptosis

    A profile shape correction to reduce the vertical sensitivity of cosmic-ray neutron sensing of soil moisture

    Get PDF
    n recent years, cosmic-ray neutron sensing (CRNS) has shown a large potential among proximal sensing techniques to monitor soil moisture noninvasively, with high frequency and a large support volume (radius up to 240 m and sensing depth up to 80 cm). This signal is, however, more sensitive to closer distances and shallower depths. Inherently, CRNS-derived soil moisture is a spatially weighted value, different from an average soil moisture as retrieved by a sensor network. In this study, we systematically test a new profile shape correction on CRNS-derived soil moisture, based on additional soil moisture profile measurements and vertical unweighting, which is especially relevant during pronounced wetting or drying fronts. The analyses are conducted with data collected at four contrasting field sites, each equipped with a CRNS probe and a distributed soil moisture sensor network. After applying the profile shape correction on CRNS-derived soil moisture, it is compared with the sensor network average. Results show that the influence of the vertical sensitivity of CRNS on integral soil moisture values is successfully reduced. One to three properly located profile measurements within the CRNS support volume improve the performance. For the four investigated field sites, the RMSE decreased 11–53% when only one profile location was considered. We therefore recommend to install along with a CRNS at least one soil moisture profile in a radial distanceProfile-shape-corrected, CRNS-derived soil moisture is an unweighted integral soil moisture over the support volume, which is easier to interpret and easier to use for further applications

    Orbital-selective Mott Transitions in a Doped Two-band Hubbard Model

    Full text link
    We extend previous studies on orbital-selective Mott transitions in the paramagnetic state of the half-filled degenerate two-band Hubbard model to the general doped case, using a high-precision quantum Monte Carlo dynamical mean-field theory solver. For sufficiently strong interactions, orbital-selective Mott transitions as a function of total band filling are clearly visible in the band-specific fillings, quasiparticle weights, double occupancies, and spectra. The results are contrasted with those of single-band models for similar correlation strengths.Comment: 12 pages, 12 figure

    Practical private database queries based on a quantum key distribution protocol

    Get PDF
    Private queries allow a user Alice to learn an element of a database held by a provider Bob without revealing which element she was interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum key distribution protocol, with changes only in the classical post-processing of the key. This approach makes our scheme both easy to implement and loss-tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved, relying on fundamental physical principles instead of unverifiable security assumptions in order to protect both user and database. We think that there is scope for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.Comment: 7 pages, 2 figures, new and improved version, clarified claims, expanded security discussio

    In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    Get PDF
    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined
    corecore