182 research outputs found
Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study
ABSTRACT Background Treatment options for previously treated metastatic triple-negative breast cancer (mTNBC) are limited. In cohort A of the phase II KEYNOTE-086 study, we evaluated pembrolizumab as second or later line of treatment for patients with mTNBC. Patients and methods Eligible patients had centrally confirmed mTNBC, ≥1 systemic therapy for metastatic disease, prior treatment with anthracycline and taxane in any disease setting, and progression on or after the most recent therapy. Patients received pembrolizumab 200 mg intravenously every 3 weeks for up to 2 years. Primary end points were objective response rate in the total and PD-L1–positive populations, and safety. Secondary end points included duration of response, disease control rate (percentage of patients with complete or partial response or stable disease for ≥24 weeks), progression-free survival, and overall survival. Results All enrolled patients (N = 170) were women, 61.8% had PD-L1–positive tumors, and 43.5% had received ≥3 previous lines of therapy for metastatic disease. ORR (95% CI) was 5.3% (2.7–9.9) in the total and 5.7% (2.4–12.2) in the PD-L1–positive populations. Disease control rate (95% CI) was 7.6% (4.4–12.7) and 9.5% (5.1–16.8), respectively. Median duration of response was not reached in the total (range, 1.2+–21.5+) and in the PD-L1–positive (range, 6.3–21.5+) populations. Median PFS was 2.0 months (95% CI, 1.9–2.0), and the 6-month rate was 14.9%. Median OS was 9.0 months (95% CI, 7.6–11.2), and the 6-month rate was 69.1%. Treatment-related adverse events occurred in 103 (60.6%) patients, including 22 (12.9%) with grade 3 or 4 AEs. There were no deaths due to AEs. Conclusions Pembrolizumab monotherapy demonstrated durable antitumor activity in a subset of patients with previously treated mTNBC and had a manageable safety profile. Clinical trial registration ClinicalTrials.gov, NCT0244700
Mutational analysis of the PLCE1 gene in steroid-resistant nephrotic syndrome
International audienceBackground: Mutations in the PLCE1 gene encoding phospholipase C epsilon 1 (PLCε1) have been recently described in patients with early-onset nephrotic syndrome (NS) and diffuse mesangial sclerosis (DMS). In addition, two cases of PLCE1 mutations associated with focal segmental glomerulosclerosis (FSGS) and later NS onset have been reported. Methods: In order to better assess the spectrum of phenotypes associated with PLCE1 mutations, we performed mutational analysis in a worldwide cohort of 139 patients (95 familial cases belonging to 68 families and 44 sporadic cases) with steroid-resistant NS presenting at a median age of 23.0 months (range 0-373). Results: We identified homozygous or compound heterozygous mutations in 33% (8/24) of DMS cases. PLCE1 mutations were found in 8% (6/78) of FSGS cases without NPHS2 mutations. Nine were novel mutations. No clear genotype-phenotype correlation was observed, with either truncating or missense mutations detected in both DMS and FSGS, and leading to a similar renal evolution. Surprisingly, 3 unaffected and unrelated individuals were also found to carry the homozygous mutations identified in their respective families. Conclusion: PLCE1 is a major gene of DMS and is mutated in a non-negligible proportion of FSGS cases without NPHS2 mutations. Although we did not identify additional variants in 19 candidate genes (16 other PLC genes, BRAF, IQGAP1 and NPHS1), we speculate that other modifier genes or environmental factors may play a role in the renal phenotype variability observed in individuals bearing PLCE1 mutations. This observation needs to be considered in the genetic counselling offered to patients
First-line therapy in atypical hemolytic uremic syndrome: consideration on infants with a poor prognosis.
BackgroundAtypical hemolytic uremic syndrome (aHUS) is a rare and heterogeneous disorder. The first line treatment of aHUS is plasma therapy, but in the past few years, the recommendations have changed greatly with the advent of eculizumab, a humanized monoclonal anti C5-antibody. Although recent recommendations suggest using it as a primary treatment for aHUS, important questions have arisen about the necessity of immediate use of eculizumab in all cases. We aimed to draw attention to a specific subgroup of aHUS patients with rapid disease progression and high mortality, in whom plasma therapy may not be feasible.MethodsWe present three pediatric patients of acute complement-mediated HUS with a fatal outcome. Classical and alternative complement pathway activity, levels of complement factors C3, C4, H, B and I, as well as of anti-factor H autoantibody and of ADAMTS13 activity were determined. The coding regions of CFH, CFI, CD46, THBD, CFB and C3 genes were sequenced and the copy number of CFI, CD46, CFH and related genes were analyzed.ResultsWe found severe activation and consumption of complement components in these patients, furthermore, in one patient we identified a previously not reported mutation in CFH (Ser722Stop), supporting the diagnosis of complement-mediated HUS. These patients were not responsive to the FFP therapy, and all cases had fatal outcome.ConclusionTaking the heterogeneity and the variable prognosis of atypical HUS into account, we suggest that the immediate use of eculizumab should be considered as first-line therapy in certain small children with complement dysregulation
Assessment of long-term renal complications in extremely low birth weight children
We assessed the long-term renal complications in a regional cohort of extremely low birth weight (ELBW) children born in 2002–2004. The study group, comprising 78 children born as ELBW infants (88% of the available cohort), was evaluated with measurement of serum cystatin C, urinary albumin excretion, renal ultrasound, and 24-h ambulatory blood pressure measurements. The control group included 38 children born full-term selected from one general practice in the district. Study patients were evaluated at a mean age of 6.7 years, and had a median birthweight of 890 g (25th–75th percentile: 760–950 g) and a median gestational age of 27 weeks (25th–75th percentile: 26–29 weeks). Mean serum cystatin C levels were significantly higher (0.64 vs. 0.59 mg/l; p = 0.01) in the ELBW group. Hypertension was diagnosed in 8/78 ELBW and 2/38 of the control children (p = 0.5). Microalbuminuria (>20 mg/g of creatinine) was detected only in five ELBW children (p = 0.17). The mean renal volume was significantly lower in the ELBW group (absolute kidney volume 81 ml vs. 113 ml; p < 0.001, relative kidney volume 85 vs. 97%; p < 0.001). Abnormally small kidneys (<2/3 of predicted size) were detected in 19 ELBW and four control children (p = 0.08). Multivariate logistic regression revealed that the only independent risk factor for renal complications was weight gained during neonatal hospitalization (odds ratio: 0.67; 95% confidence interval: 0.39–0.94). Serum cystatin C and kidney volume are significantly lower in school-age ELBW children. It is important to include systematic renal evaluation in the follow-up programs of ELBW infants
aHUS caused by complement dysregulation: new therapies on the horizon
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5–10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS
Disease recurrence in paediatric renal transplantation
Renal transplantation (Tx) is the treatment of choice for end-stage renal disease. The incidence of acute rejection after renal Tx has decreased because of improving early immunosuppression, but the risk of disease recurrence (DR) is becoming relatively high, with a greater prevalence in children than in adults, thereby increasing patient morbidity, graft loss (GL) and, sometimes, mortality rate. The current overall graft loss to DR is 7–8%, mainly due to primary glomerulonephritis (70–80%) and inherited metabolic diseases. The more typical presentation is a recurrence of the full disease, either with a high risk of GL (focal and segmental glomerulosclerosis 14–50% DR, 40–60% GL; atypical haemolytic uraemic syndrome 20–80% DR, 10–83% GL; membranoproliferative glomerulonephritis 30–100% DR, 17–61% GL; membranous nephropathy ∼30% DR, ∼50% GL; lipoprotein glomerulopathy ∼100% DR and GL; primary hyperoxaluria type 1 80–100% DR and GL) or with a low risk of GL [immunoglobulin (Ig)A nephropathy 36–60% DR, 7–10% GL; systemic lupus erythematosus 0–30% DR, 0–5% GL; anti-neutrophilic cytoplasmic antibody (ANCA)-associated glomerulonephritis]. Recurrence may also occur with a delayed risk of GL, such as insulin-dependent diabetes mellitus, sickle cell disease, endemic nephropathy, and sarcoidosis. In other primary diseases, the post-Tx course may be complicated by specific events that are different from overt recurrence: proteinuria or cancer in some genetic forms of nephrotic syndrome, anti-glomerular basement membrane antibodies-associated glomerulonephritis (Alport syndrome, Goodpasture syndrome), and graft involvement as a consequence of lower urinary tract abnormality or human immunodeficiency virus (HIV) nephropathy. Some other post-Tx conditions may mimic recurrence, such as de novo membranous glomerulonephritis, IgA nephropathy, microangiopathy, or isolated specific deposits (cystinosis, Fabry disease). Adequate strategies should therefore be added to kidney Tx, such as donor selection, associated liver Tx, plasmatherapy, specific immunosuppression protocols. In such conditions, very few patients may be excluded from kidney Tx only because of a major risk of DR and repeated GL. In the near future the issue of DR after kidney Tx may benefit from alternatives to organ Tx, such as recombinant proteins, specific monoclonal antibodies, cell/gene therapy, and chaperone molecules
ADAMTS13 phenotype in plasma from normal individuals and patients with thrombotic thrombocytopenic purpura
The activity of ADAMTS13, the von Willebrand factor cleaving protease, is deficient in patients with thrombotic thrombocytopenic purpura (TTP). In the present study, the phenotype of ADAMTS13 in TTP and in normal plasma was demonstrated by immunoblotting. Normal plasma (n = 20) revealed a single band at 190 kD under reducing conditions using a polyclonal antibody, and a single band at 150 kD under non-reducing conditions using a monoclonal antibody. ADAMTS13 was not detected in the plasma from patients with congenital TTP (n = 5) by either antibody, whereas patients with acquired TTP (n = 2) presented the normal phenotype. Following immunoadsorption of immunoglobulins, the ADAMTS13 band was removed from the plasma of the patients with acquired TTP, but not from that of normal individuals. This indicates that ADAMTS13 is complexed with immunoglobulin in these patients. The lack of ADAMTS13 expression in the plasma from patients with hereditary TTP may indicate defective synthesis, impaired cellular secretion, or enhanced degradation in the circulation. This study differentiated between normal and TTP plasma, as well as between congenital and acquired TTP. This method may, therefore, be used as a complement in the diagnosis of TTP
Association Testing Of Copy Number Variants in Schizophrenia and Autism Spectrum Disorders
Background: Autism spectrum disorders and schizophrenia have been associated with an overlapping set of copynumber variant loci, but the nature and degree of overlap in copy number variants (deletions compared toduplications) between these two disorders remains unclear.Methods: We systematically evaluated three lines of evidence: (1) the statistical bases for associations of autismspectrum disorders and schizophrenia with a set of the primary CNVs thus far investigated, from previous studies;(2) data from case series studies on the occurrence of these CNVs in autism spectrum disorders, especially amongchildren, and (3) data on the extent to which the CNVs were associated with intellectual disability anddevelopmental, speech, or language delays. We also conducted new analyses of existing data on these CNVs inautism by pooling data from seven case control studies.Results: Four of the CNVs considered, dup 1q21.1, dup 15q11-q13, del 16p11.2, and dup 22q11.21, showed clearstatistical evidence as autism risk factors, whereas eight CNVs, del 1q21.1, del 3q29, del 15q11.2, del 15q13.3, dup16p11.2, dup 16p13.1, del 17p12, and del 22q11.21, were strongly statistically supported as risk factors forschizophrenia. Three of the CNVs, dup 1q21.1, dup 16p11.2, and dup 16p13.1, exhibited statistical support as riskfactors for both autism and schizophrenia, although for each of these CNVs statistical significance was nominal fortests involving one of the two disorders. For the CNVs that were statistically associated with schizophrenia but werenot statistically associated with autism, a notable number of children with the CNVs have been diagnosed withautism or ASD; children with these CNVs also demonstrate a high incidence of intellectual disability anddevelopmental, speech, or language delays.Conclusions: These findings suggest that although CNV loci notably overlap between autism and schizophrenia,the degree of strongly statistically supported overlap in specific CNVs at these loci remains limited. These analysesalso suggest that relatively severe premorbidity to CNV-associated schizophrenia in children may sometimes bediagnosed as autism spectrum disorder
- …