158 research outputs found

    Sugar Utilisation and Conservation of the gal-lac Gene Cluster in Streptococcus thermophilus

    Get PDF
    The adaptation to utilise lactose as primary carbon and energy source is a characteristic for Streptococcus thermophilus. These organisms, however only utilise the glucose moiety of lactose while the galactose moiety is excreted into the growth medium. In this study we evaluated the diversity of sugar utilisation and the conservation of the gal-lac gene cluster in a collection of 18 S. thermophilus strains isolated from a variety of sources. For this purpose analysis was performed on DNA from these isolates and the results were compared with those obtained with a strain from which the complete genome sequence has been determined. The sequence, organisation and flanking regions of the S. thermophilus gal-lac gene cluster were found to be highly conserved among all strains. The vast majority of the S. thermophilus strains were able to utilize only glucose, lactose, and sucrose as carbon sources, some strains could also utilize fructose and two of these were able to grow on galactose. Molecular characterisation of these naturally occurring Gal+ strains revealed up-mutations in the galKTE promoter that were absent in all other strains. These data support the hypothesis that the loss of the ability to ferment galactose can be attributed to the low activity of the galKTE promoter, probably as a consequence of the adaptation to milk in which the lactose levels are in excess

    Characterization of a novel angular dioxygenase from fluorene-degrading Sphingomonas sp. strain LB126

    Get PDF
    In this study, the genes involved in the initial attack on fluorene by Sphingomonas sp. LB126 were investigated. The ? and ? subunits of a dioxygenase complex (FlnA1A2), showing 63% and 51% sequence identity respectively, with the subunits of an angular dioxygenase from Gram-positive Terrabacter sp. DBF63, were identified. When overexpressed in E. coli, FlnA1A2 was responsible for the angular oxidation of fluorene, fluorenol, fluorenone, dibenzofuran and dibenzo-p-dioxin. Moreover, FlnA1A2 was able to oxidize polycyclic aromatic hydrocarbons and heteroaromatics, some of which were not oxidized by the dioxygenase from Terrabacter sp. DBF63. Quantification of resulting oxidation products showed that fluorene and phenanthrene were preferred substrates

    Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis

    Get PDF
    Manganese serves an important function in Lactobacillus plantarum in protection against oxidative stress and this bacterium can accumulate Mn2+ up to millimolar levels intracellularly. Although the physiological role of Mn2+ and the uptake of this metal ion have been well documented, the only uptake system described so far for this bacterium is the Mn2+- and Cd2+-specific P-type ATPase (MntA). Recently, the genome of L. plantarum WCFS1 has been sequenced allowing in silico detection of genes potentially encoding Mn2+ transport systems, using established microbial Mn2+ transporters as the query sequence. This genome analysis revealed that L. plantarum WCFS1 encodes, besides the previously described mntA gene, an ABC transport system (mtsCBA) and three genes encoding Nramp transporters (mntH1, mntH2 and mntH3). The expression of three (mtsCBA, mntH1 and mntH2) of the five transport systems was specifically derepressed or induced upon Mn2+ limitation, supporting their role in Mn2+ homeostasis in L. plantarum. However, in contrast to previous reports, mntA expression remains below detection levels in both Northern and real-time RT-PCR analysis in both Mn2+ excess and starvation conditions. Growth of WCFS1 derivatives mutated in mntA, mtsA or mntH2, or both mtsA and mntH2 appears unaffected under Mn2+ excess or Mn2+ limitation. Moreover, intracellular Mn2+ concentrations remained unaltered in these mutants compared to the wild-type. This may suggest that this species is highly adaptive in response to inactivation of these genes or, alternatively, that other transporters that have not yet been identified as Mn2+ transporters in bacteria are involved in Mn2+ homeostasis in L. plantaru

    Short- and Long-Term Biomarkers for Bacterial Robustness: A Framework for Quantifying Correlations between Cellular Indicators and Adaptive Behavior

    Get PDF
    The ability of microorganisms to adapt to changing environments challenges the prediction of their history-dependent behavior. Cellular biomarkers that are quantitatively correlated to stress adaptive behavior will facilitate our ability to predict the impact of these adaptive traits. Here, we present a framework for identifying cellular biomarkers for mild stress induced enhanced microbial robustness towards lethal stresses. Several candidate-biomarkers were selected by comparing the genome-wide transcriptome profiles of our model-organism Bacillus cereus upon exposure to four mild stress conditions (mild heat, acid, salt and oxidative stress). These candidate-biomarkers—a transcriptional regulator (activating general stress responses), enzymes (removing reactive oxygen species), and chaperones and proteases (maintaining protein quality)—were quantitatively determined at transcript, protein and/or activity level upon exposure to mild heat, acid, salt and oxidative stress for various time intervals. Both unstressed and mild stress treated cells were also exposed to lethal stress conditions (severe heat, acid and oxidative stress) to quantify the robustness advantage provided by mild stress pretreatment. To evaluate whether the candidate-biomarkers could predict the robustness enhancement towards lethal stress elicited by mild stress pretreatment, the biomarker responses upon mild stress treatment were correlated to mild stress induced robustness towards lethal stress. Both short- and long-term biomarkers could be identified of which their induction levels were correlated to mild stress induced enhanced robustness towards lethal heat, acid and/or oxidative stress, respectively, and are therefore predictive cellular indicators for mild stress induced enhanced robustness. The identified biomarkers are among the most consistently induced cellular components in stress responses and ubiquitous in biology, supporting extrapolation to other microorganisms than B. cereus. Our quantitative, systematic approach provides a framework to search for these biomarkers and to evaluate their predictive quality in order to select promising biomarkers that can serve to early detect and predict adaptive traits

    Complete Sequencing and Pan-Genomic Analysis of Lactobacillus delbrueckii subsp. bulgaricus Reveal Its Genetic Basis for Industrial Yogurt Production

    Get PDF
    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production

    Fine Tuning of the Lactate and Diacetyl Production through Promoter Engineering in Lactococcus lactis

    Get PDF
    Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15±0.08 mM to 9.94±0.07 mM, and the corresponding diacetyl production increased from 1.07±0.03 mM to 4.16±0.06 mM with the intracellular NADH/NAD+ ratios varying from 0.711±0.005 to 0.383±0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H2O-forming NADH oxidase activity led to 76.95% lower H2O2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H2O2 accumulation and prolong cell survival

    Isolation and Characterization of Bacteria from the Gut of Bombyx mori that Degrade Cellulose, Xylan, Pectin and Starch and Their Impact on Digestion

    Get PDF
    Bombyx mori L. (Lepidoptera: Bombycidae) have been domesticated and widely used for silk production. It feeds on mulberry leaves. Mulberry leaves are mainly composed of pectin, xylan, cellulose and starch. Some of the digestive enzymes that degrade these carbohydrates might be produced by gut bacteria. Eleven isolates were obtained from the digestive tract of B. mori, including the Gram positive Bacillus circulans and Gram negative Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Serratia liquefaciens, Enterobacter sp., Pseudomonas fluorescens, P. aeruginosa, Aeromonas sp., and Erwinia sp.. Three of these isolates, P. vulgaris, K. pneumoniae, C. freundii, were cellulolytic and xylanolytic, P. fluorescens and Erwinia sp., were pectinolytic and K. pneumoniae degraded starch. Aeromonas sp. was able to utilize the CMcellulose and xylan. S. liquefaciens was able to utilize three polysaccharides including CMcellulose, xylan and pectin. B. circulans was able to utilize all four polysaccharides with different efficacy. The gut of B. mori has an alkaline pH and all of the isolated bacterial strains were found to grow and degrade polysaccharides at alkaline pH. The number of cellulolytic bacteria increases with each instar
    • …
    corecore