595 research outputs found

    Constraining Particle Variation in Lunar Regolith for Simulant Design

    Get PDF
    Simulants are used by the lunar engineering community to develop and test technologies for In Situ Resource Utilization (ISRU), excavation and drilling, and for mitigation of hazards to machinery and human health. Working with the United States Geological Survey (USGS), other NASA centers, private industry and academia, Marshall Space Flight Center (MSFC) is leading NASA s lunar regolith simulant program. There are two main efforts: simulant production and simulant evaluation. This work requires a highly detailed understanding of regolith particle type, size, and shape distribution, and of bulk density. The project has developed Figure of Merit (FoM) algorithms to quantitatively compare these characteristics between two materials. The FoM can be used to compare two lunar regolith samples, regolith to simulant, or two parcels of simulant. In work presented here, we use the FoM algorithm to examine the variance of particle type in Apollo 16 highlands regolith core and surface samples. For this analysis we have used internally consistent particle type data for the 90-150 m fraction of Apollo core 64001/64002 from station 4, core 60009/60010 from station 10, and surface samples from various Apollo 16 stations. We calculate mean modal compositions for each core and for the group of surface samples and quantitatively compare samples of each group to its mean as a measurement of within-group variance; we also calculate an FoM for every sample against the mean composition of 64001/64002. This gives variation with depth at two locations and between Apollo 16 stations. Of the tested groups, core 60009/60010 has the highest internal variance with an average FoM score of 0.76 and core 64001/64002 has the lowest with an average FoM of 0.92. The surface samples have a low but intermediate internal variance with an average FoM of 0.79. FoM s calculated against the 64001/64002 mean reference composition range from 0.79-0.97 for 64001/64002, from 0.41-0.91 for 60009/60010, and from 0.54-0.93 for the surface samples. Six samples fall below 0.70, and they are also the least mature (i.e., have the lowest I(sub s)/FeO). Because agglutinates are the dominant particle type and the agglutinate population increases with sample maturity (I(sub s)/FeO), the maturity of the sample relative to the reference is a prime determinant of the particle type FoM score within these highland samples

    Optical quenching and recovery of photoconductivity in single-crystal diamond

    Full text link
    We study the photocurrent induced by pulsed-light illumination (pulse duration is several nanoseconds) of single-crystal diamond containing nitrogen impurities. Application of additional continuous-wave light of the same wavelength quenches pulsed photocurrent. Characterization of the optically quenched photocurrent and its recovery is important for the development of diamond based electronics and sensing

    Figures of Merit Software: Description, User's Guide, Installation Notes, Versions Description, and License Agreement

    Get PDF
    Figures of Merit (FoMs) and the FoM software provide a method for quantitatively evaluating the quality of a regolith simulant by comparing the simulant to a reference material. FoMs may be used for comparing a simulant to actual regolith material, specification by stating the value a simulant s FoMs must attain to be suitable for a given application and comparing simulants from different vendors or production runs. FoMs may even be used to compare different simulants to each other. A single FoM is conceptually an algorithm that computes a single number for quantifying the similarity or difference of a single characteristic of a simulant material and a reference material and provides a clear measure of how well a simulant and reference material match or compare. FoMs have been constructed to lie between zero and 1, with zero indicating a poor or no match and 1 indicating a perfect match. FoMs are defined for modal composition, particle size distribution, particle shape distribution, (aspect ratio and angularity), and density. This TM covers the mathematics, use, installation, and licensing for the existing FoM code in detail

    Advancing professionalization in human simulation: perspectives of SP educators from around the world on the Association of SP Educators Standards of Best Practice

    Get PDF
    Introduction Between 2013 and 2017, the Association of SP Educators (ASPE), a global organization of educators dedicated to the work of human simulation, developed Standards of Best Practice (SOBP) for working with human role players in simulation. These individuals are known by diverse terms, including simulated or standardized patients or participants (SPs). This study had two aims: (1) to understand the ways in which the ASPE SOBP are relevant to the practices of SP educators around the world, and (2) to identify improvements to the ASPE SOBP from a global perspective. Methods This qualitative study was undertaken between January 2020 and July 2022. Subjects consented to audio-recorded interviews. A collaborative, inductive coding approach was adopted, followed by thematic analysis, aligned with the methods described by Braun and Clarke. Themes were further updated following reflexive conversations amongst the investigators at meetings over the course of several months and were aligned with the study aims. Results Twelve SP educators from six continents participated. Four primary themes were identified (each with multiple subthemes): influencing SP educator practices; advancing professionalization; identifying challenges to implementation; and bridging gaps in the ASPE SOBP. Discussion A diverse group of SP educators from around the world identified the ASPE SOBP in general as relevant and applicable to their practice. The standards provided both guidance and flexibility for working with SPs in a safe, effective and quality-based way. At the same time there were challenges noted and recommendations made that can help to inform future iterations of the standards

    Vaccines as alternatives to antibiotics for food producing animals. Part 2:new approaches and potential solutions

    Get PDF
    Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public–private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks

    A Comparison of the Anti-Tumor Effects of a Chimeric versus Murine Anti-CD19 Immunotoxins on Human B Cell Lymphoma and Pre-B Acute Lymphoblastic Leukemia Cell Lines

    Get PDF
    Precursor B cell acute lymphoblastic leukemia (pre-B ALL) affects five to six thousand adults and almost three thousand children every year. Approximately 25% of the children and 60% of the adults die from their disease, highlighting the need for new therapies that complement rather than overlap chemotherapy and bone marrow transplantation. Immunotherapy is a class of therapies where toxicities and mechanisms of action do not overlap with those of chemotherapy. Because CD19 is a B cell- restricted membrane antigen that is expressed on the majority of pre-B tumor cells, a CD19-based immunotherapy is being developed for ALL. In this study, the anti-tumor activities of immunotoxins (ITs) constructed by conjugating a murine monoclonal antibody (MAb), HD37, or its chimeric (c) construct to recombinant ricin toxin A chain (rRTA) were compared both in vitro using human pre-B ALL and Burkitt’s lymphoma cell lines and in vivo using a disseminated human pre-B ALL tumor cell xenograft model. The murine and chimeric HD37 IT constructs were equally cytotoxic to pre-B ALL and Burkitt’s lymphoma cells in vitro and their use in vivo resulted in equivalent increases in survival of SCID mice with human pre-B ALL tumors when compared with control mice
    • …
    corecore