257 research outputs found

    Walks of molecular motors in two and three dimensions

    Get PDF
    Molecular motors interacting with cytoskeletal filaments undergo peculiar random walks consisting of alternating sequences of directed movements along the filaments and diffusive motion in the surrounding solution. An ensemble of motors is studied which interacts with a single filament in two and three dimensions. The time evolution of the probability distribution for the bound and unbound motors is determined analytically. The diffusion of the motors is strongly enhanced parallel to the filament. The analytical expressions are in excellent agreement with the results of Monte Carlo simulations.Comment: 7 pages, 2 figures, to be published in Europhys. Let

    Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique

    Get PDF
    Due to its low cost, biocompatibility and slow bioresorption, poly-ε-caprolactone (PCL) continues to be a suitable material for select biomedical engineering applications. We used a combined atomic force microscopy (AFM)/optical microscopy technique to determine key mechanical properties of individual electrospun PCL nanofibers with diameters between 440–1040 nm. Compared to protein nanofibers, PCL nanofibers showed much lower adhesion, as they slipped on the substrate when mechanically manipulated. We, therefore, first developed a novel technique to anchor individual PCL nanofibers to micrometer-sized ridges on a substrate, and then mechanically tested anchored nanofibers. When held at constant strain, tensile stress relaxed with fast and slow relaxation times of 1.0 ± 0.3 s and 8.8 ± 3.1 s, respectively. The total tensile modulus was 62 ± 26 MPa, the elastic (non-relaxing) component of the tensile modulus was 53 ± 36 MPa. Individual PCL fibers could be stretched elastically (without permanent deformation) to strains of 19–23%. PCL nanofibers are rather extensible; they could be stretched to a strain of at least 98%, and a tensile strength of at least 12 MPa, before they slipped off the AFM tip. PCL nanofibers that had aged for over a month at ambient conditions became stiffer and less elastic. Our technique provides accurate nanofiber mechanical data, which are needed to guide construction of scaffolds for cells and other biomedical devices

    Superdiffusion in a Model for Diffusion in a Molecularly Crowded Environment

    Full text link
    We present a model for diffusion in a molecularly crowded environment. The model consists of random barriers in percolation network. Random walks in the presence of slowly moving barriers show normal diffusion for long times, but anomalous diffusion at intermediate times. The effective exponents for square distance versus time usually are below one at these intermediate times, but can be also larger than one for high barrier concentrations. Thus we observe sub- as well as super-diffusion in a crowded environment.Comment: 8 pages including 4 figure

    Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments

    Get PDF
    In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such DNA looping interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified (diffusive) hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern

    The active living gender's gap challenge: 2013-2017 Eurobarometers physical inactivity data show constant higher prevalence in women with no progress towards global reduction goals

    Get PDF
    BACKGROUND: The World Health Organization (WHO) considers physical inactivity (PIA) as a critical noncommunicable factor for disease and mortality, affecting more women than men. In 2013, the WHO set a 10% reduction of the PIA prevalence, with the goal to be reached by 2025. Changes in the 2013-2017 period of physical inactivity prevalence in the 28 European Union (EU) countries were evaluated to track the progress in achieving WHO 2025 target. METHODS: In 2013 and 2017 EU Special Eurobarometers, the physical activity levels reported by the International Physical Activity Questionnaire of 53,607 adults were analyzed. Data were considered as a whole sample and country-by-country. A χ2 test was used to analyze the physical inactivity prevalence (%) between countries, analyzing women and men together and separately. Additionally, PIA prevalence was analyzed between years (2013-2017) for the overall EU sample and within-country using a Z-Score for two population proportions. RESULTS: The PIA prevalence increased between 2013 and 2017 for the overall EU sample (p <  0.001), and for women (p = 0.04) and men (p < 0.001) separately. Data showed a higher PIA prevalence in women versus men during both years (p <  0.001). When separately considering changes in PIA by gender, only Belgium's women and Luxembourg's men showed a reduction in PIA prevalence. Increases in PIA prevalence over time were observed in women from Austria, Croatia, Germany, Lithuania, Malta, Portugal, Romania, and Slovakia and in men from Bulgaria, Croatia, Czechia, Germany, Italy, Lithuania, Portugal, Romania, Slovakia, and Spain. CONCLUSIONS: PIA prevalence showed an overall increase across the EU and for both women and men between 2013 and 2017, with higher rates of PIA reported for women versus men during both years. PIA prevalence was reduced in only Belgium's women and Luxembourg's men. Our data indicate a limited gender-sensible approach while tacking PIA prevalence with no progress reaching global voluntary reductions of PIA for 2025

    Quantitative Analysis of the Density of Trap States at the Semiconductor-Dielectric Interface in Organic Field-Effect Transistors

    Get PDF
    The electrical properties of organic field-effect transistors are governed by the quality of the constituting layers, and the resulting interfaces. We compare the properties of the same organic semiconductor film, 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene, with bottom SiO2 dielectric and top Cytop dielectric and find a 10× increase in charge carrier mobility, from 0.17 ± 0.19 cm2 V−1 s−1 to 1.5 ± 0.70 cm2 V−1 s−1, when the polymer dielectric is used. This results from a significant reduction of the trap density of states in the semiconductor band-gap, and a decrease in the contact resistance

    Salerno's model of DNA reanalysed: could solitons have biological significance?

    Full text link
    We investigate the sequence-dependent behaviour of localised excitations in a toy, nonlinear model of DNA base-pair opening originally proposed by Salerno. Specifically we ask whether ``breather'' solitons could play a role in the facilitated location of promoters by RNA polymerase. In an effective potential formalism, we find excellent correlation between potential minima and {\em Escherichia coli} promoter recognition sites in the T7 bacteriophage genome. Evidence for a similar relationship between phage promoters and downstream coding regions is found and alternative reasons for links between AT richness and transcriptionally-significant sites are discussed. Consideration of the soliton energy of translocation provides a novel dynamical picture of sliding: steep potential gradients correspond to deterministic motion, while ``flat'' regions, corresponding to homogeneous AT or GC content, are governed by random, thermal motion. Finally we demonstrate an interesting equivalence between planar, breather solitons and the helical motion of a sliding protein ``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J. Biol. Phys., accepted 02/09/0

    A Simple and Robust Approach to Reducing Contact Resistance in Organic Transistors

    Get PDF
    Efficient injection of charge carriers from the contacts into the semiconductor layer is crucial for achieving high-performance organic devices. The potential drop necessary to accomplish this process yields a resistance associated with the contacts, namely the contact resistance. A large contact resistance can limit the operation of devices and even lead to inaccuracies in the extraction of the device parameters. Here, we demonstrate a simple and efficient strategy for reducing the contact resistance in organic thin-film transistors by more than an order of magnitude by creating high work function domains at the surface of the injecting electrodes to promote channels of enhanced injection. We find that the method is effective for both organic small molecule and polymer semiconductors, where we achieved a contact resistance as low as 200 Ωcm and device charge carrier mobilities as high as 20 cm2V−1s−1, independent of the applied gate voltage

    Fibrin Fibers Have Extraordinary Extensibility and Elasticity

    Get PDF
    Blood clots perform an essential mechanical task, yet the mechanical behavior of fibrin fibers, which form the structural framework of a clot, is largely unknown. By using combined atomic force-fluorescence microscopy, we determined the elastic limit and extensibility of individual fibers. Fibrin fibers can be strained 180% (2.8-fold extension) without sustaining permanent lengthening, and they can be strained up to 525% (average 330%) before rupturing. This is the largest extensibility observed for protein fibers. The data imply that fibrin monomers must be able to undergo sizeable, reversible structural changes and that deformations in clots can be accommodated by individual fiber stretching
    corecore