1,336 research outputs found

    Dynamics of hydrogen dissociation at the sulfur-covered Pd(100) surface

    No full text

    Thermo-mechanical coupling in fiber-reinforced continua: mixed finite element formulations and energy-momentum time integration

    Get PDF
    Our research activity is motivated by accurate dynamic simulations of fiber- reinforced materials in light-weight structures. In order to accomplish this, we have to take various steps. The material behavior is formulated with an anisotropic, polyconvex strain energy function. We combine different mixed element formulations (e.g. see Ref- erence [2] or [3]) with a Galerkin time integrator as shown in Reference [5]. This reduces the volumetric locking effect of an incompressible matrix material as well as the locking effect due to stiff fibers. In addition, we increase the accuracy by using Galerkin-based higher-order time integrators. Since in long-term simulations a hugh energy error is a strong problem, we apply the mixed finite element formulations to an energy-momentum time integration scheme (see Reference [6]). In the next step, we extend the material formulation by adding a thermo-mechanical coupling as shown in Reference [7]. Here we also describe the directional heat conduction of the fiber. As numerical examples with multiple material domains and families of fibers serve cooks cantilever beam as in Ref- erence [5]. The Dirichlet boundary conditions are modelled by the Lagrange-multiplier method (see Reference [7]) and as Neumann boundary condition a pressure distribution is used

    Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration

    Full text link
    To clarify a key role of ff orbitals in the emergence of antiferro-quadrupole structure in PrPb3_{3}, we investigate the ground-state property of an orbital-degenerate Kondo lattice model by numerical diagonalization techniques. In PrPb3_{3}, Pr3+^{3+} has a 4f24f^{2} configuration and the crystalline-electric-field ground state is a non-Kramers doublet Γ3\Gamma_{3}. In a jj-jj coupling scheme, the Γ3\Gamma_{3} state is described by two local singlets, each of which consists of two ff electrons with one in Γ7\Gamma_{7} and another in Γ8\Gamma_{8} orbitals. Since in a cubic structure, Γ7\Gamma_{7} has localized nature, while Γ8\Gamma_{8} orbitals are rather itinerant, we propose the orbital-degenerate Kondo lattice model for an effective Hamiltonian of PrPb3_{3}. We show that an antiferro-orbital state is favored by the so-called double-exchange mechanism which is characteristic of multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30, 2007, Kobe

    Relocation in Carsharing Systems using Flows in Time-Expanded Networks

    Get PDF
    A manuscript on this topic can be found at: http://hal.archives-ouvertes.fr/hal-00908242International audienceIn a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station, provided that there is a car available at the start station and a free place at the final station. To ensure the latter, customers have to book their demands in advance; hereby, customer requests can be accepted or rejected by the operator. The stations have to keep a good ratio between available cars and free places in each station, in order to serve already accepted customer requests and to refuse as few new customer requests as possible. This leads to the problem of relocating cars between stations, which can be modeled as Pickup and Delivery Problem in a metric space induced by the urban area or, alternatively, by means of flows of cars in convoys in a time-expanded network.Note that we consider an innovative carsharing system with partly autonomous cars which allows to build convoys of cars, each moved by only one driver. This leads to a similar situation as in bikesharing systems, where trucks can simultaneously move several bikes, but no requests are booked in advance. Hereby, two flows are coupled in the sense that the flow of cars is dependent from the flow of drivers (since cars can only be moved in convoys); the flow coupling constraints reflect the complexity of the studied problem.We present integer programming formulations for two variants of the relocation problem: a min-cost flow problem to serve a given set of customer requests at minimal costs (quality of service aspect), and a max-profit flow problem to additionally solve the decision problem of accepting or rejecting customer requests (economic aspect). Both models take advantage of users booking their demands in advance and can be applied to the offline as well as the online version of the relocation problem in order to fully capture the dynamic evolution of the system over time.</p

    Floquet Prethermalization in a Bose-Hubbard System

    No full text
    Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived 'prethermal' regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems

    On Secure Implementation of an IHE XUA-Based Protocol for Authenticating Healthcare Professionals

    Get PDF
    The importance of the Electronic Health Record (EHR) has been addressed in recent years by governments and institutions.Many large scale projects have been funded with the aim to allow healthcare professionals to consult patients data. Properties such as confidentiality, authentication and authorization are the key for the success for these projects. The Integrating the Healthcare Enterprise (IHE) initiative promotes the coordinated use of established standards for authenticated and secure EHR exchanges among clinics and hospitals. In particular, the IHE integration profile named XUA permits to attest user identities by relying on SAML assertions, i.e. XML documents containing authentication statements. In this paper, we provide a formal model for the secure issuance of such an assertion. We first specify the scenario using the process calculus COWS and then analyse it using the model checker CMC. Our analysis reveals a potential flaw in the XUA profile when using a SAML assertion in an unprotected network. We then suggest a solution for this flaw, and model check and implement this solution to show that it is secure and feasible

    Biological nitrogen fixation and nifH gene abundance in deadwood of 13 different tree species

    Get PDF

    A threshold heating rate for single-stage heat treatments in glass-ceramics containing seed formers

    Get PDF
    The development of glass-ceramic materials is often achieved using an elementary microstructural strategy that splits the tasks of seed formation and functionality between two types of crystals. This strategy requires customized time-temperature ceramization protocols, which have been so far implemented using empirical parameters. Here, a more fundamental approach is proposed: the extent of overlap Oe between seed formation and volume crystallization is evaluated by calorimetric and dilatometric measurements, targeting the computation of a threshold heating rate qt for effective single-stage heat treatments. The applicability of this novel parameter is tested in TiO2-doped lithium magnesium aluminosilicate glass-ceramics, whose seed formation stage is thoroughly characterized by Raman spectroscopy and STEM. High-temperature X-ray diffraction demonstrates that insufficient seeding results in potentially weaker performances of the final products, due to large sizes and silica deficiency of the functional quartz solid solution crystals

    Presenting the Compendium Isotoporum Medii Aevi, a multi-isotope database for Medieval Europe

    Get PDF
    Here we present the Compendium Isotoporum Medii Aevi (CIMA), an open-access database gathering more than 50,000 isotopic measurements for bioarchaeological samples located within Europe and its margins, and dating between 500 and 1500 CE. This multi-isotope (δ13C, δ15N, δ34S, δ18O, and 87Sr/86Sr) archive of measurements on human, animal, and plant archaeological remains also includes a variety of supporting information that offer, for instance, a taxonomic characterization of the samples, their location, and chronology, in addition to data on social, religious, and political contexts. Such a dataset can be used to identify data gaps for future research and to address multiple research questions, including those related with studies on medieval human lifeways (i.e. human subsistence, spatial mobility), characterization of paleo-environmental and -climatic conditions, and on plant and animal agricultural management practices. Brief examples of such applications are given here and we also discuss how the integration of large volumes of isotopic data with other types of archaeological and historical data can improve our knowledge of medieval Europe.Background & Summary Methods Data Records Technical Validation Usage Note
    corecore