Metadata, citation and similar papers at core.ac.uk

Provided by HAL Clermont Université

archives-ouvertes

Relocation in Carsharing Systems using Flows in
Time-Expanded Networks
Sven O. Krumke, Alain Quilliot, Annegret K. Wagler, Jan-Thierry Wegener

» To cite this version:

Sven O. Krumke, Alain Quilliot, Annegret K. Wagler, Jan-Thierry Wegener. Relocation in
Carsharing Systems using Flows in Time-Expanded Networks. 2013. <hal-00908242>

HAL 1Id: hal-00908242
https://hal.archives-ouvertes.fr /hal-00908242

Submitted on 22 Nov 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/49286684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00908242

Relocation in Carsharing Systems using Flows
in Time-Expanded Networks

Sven O. Krumke*
Alain Quilliot, Annegret K. Wagler, Jan-Thierry Wegener!

November 21, 2013

Abstract

In a Carsharing System, a fleet of cars is distributed at stations in an
urban area, customers can take and return cars at any time and station.
For operating such a system in a satisfactory way, the stations have to
keep a good ratio between the total number of places and the number of
cars in each station, in order to refuse as few customer requests as possible.
This leads to the problem of relocating cars between stations, which can
be modeled as Pickup and Delivery Problem in a metric space induced by
the urban area or, alternatively, by means of flows of cars in convoys in
a time-expanded network. We present the resulting integer programming
formulations for two variants of the problem: a min-cost flow problem to
serve a given set of customer requests at minimal costs, and a max-profit
flow problem to additionally solve the decision problem of accepting or
rejecting customer requests. These settings can be applied to both the
offline and the online version of the relocation problem in order to fully
capture the dynamic evolution of the system over time.

1 Introduction

Carsharing is a modern way of car rental, attractive to customers who make
only occasional use of a car on demand. Carsharing contributes to sustainable
transport as less car intensive means of urban transport, and an increasing
number of cities all over the world establish(ed) such services.

In a Carsharing System, a fleet of cars is distributed at specified stations in
an urban area, customers can take a car at any time and station and return it at
any time and station, provided that there is a car available at the start station
and a free place at the final station. To ensure the latter, customers have to
book their demands in advance.

For operating such a system in a satisfactory way, the stations have to keep
a good ratio between the total number of places and the number of cars in each

*University of Kaiserslautern (Departement of Mathematics), Kaiserslautern, Germany,
krumke@mathematik.uni-kl.de

TUniversité Blaise Pascal (Laboratoire d’Informatique, de Modélisation et d’Optimisation
des Systémes), Clermont-Ferrand, France, {quilliot,wagler,wegener}@isima.fr. This work
was founded by the French National Research Agency, the European Commission (Feder
funds) and the Région Auvergne in the Framework of the LabEx IMobS3.

station, in order to refuse as few customer requests as possible. This leads to
the problem of balancing the load of the stations, called Relocation Problem: an
operator has to monitor the load situations of the stations and to decide when
and how to move cars from “overfull” stations to “underfull” ones.

Balancing problems of this type occur for any car or bike sharing system,
but the scale of the instances, the homogeneity of the fleet, the time delay
for prebookings and the possibility to move one or more vehicles in balancing
steps differ. We consider an innovative Carsharing System, where the cars are
partly autonomous which allows to build convoys of cars, where each convoy is
moved by only one driver. This setting is similar to bikesharing, where trucks
can simultaneously move several bikes during the relocation process [3, 5, 4].
However, the users of Bikesharing Systems do not book their requests in advance
such that the main goal is to guarantee a balanced system during working hours
(dynamic situation as in [5]) or to set up an appropriate initial state for the
morning (static situation as in [4]). In our case, customers book their requests
in advance and we can benefit from this forecast of future (im)balances.

For such a Carsharing System, the load situations of the stations over time
can be modeled in terms of a discrete event-based system, and the Relocation
Problem can be understood as Pickup and Delivery Problem (PDP) in a metric
space encoding the considered urban area [6]. Hereby, a set of routes has to be
constructed for the convoys, in order to satisfy transportation requests between
“overfull” and “underfull” stations, see Section 2 for details. Problems of this
type are known to be hard, see e.g. [1, 2, 7]. In [6], a heuristic approach is
presented for the static (offline) version of the Relocation Problem that firstly
solves a matching problem to generate transport requests, subsequently solves
a PDP, and iteratively augments the transport requests and resulting routes.

Here, we treat the online version of the Relocation Problem in order to
capture its dynamic evolution over time. It is natural to interpret the Relocation
Problem by means of flows in a time-expanded network, as e.g., proposed by
[5] for Bikesharing Systems. In this work, we model the Relocation Problem by
coupled flows of cars in convoys in a time-expanded network, taking in addition
prebooked customer requests into account, see Section 3 for details. This allows
us to treat two variants of the Relocation Problem:

e a min-cost flow problem to determine convoy routes at minimal costs fulfill-
ing a given set of customer requests (quality of service aspect, Section 3.3),

e a max-profit flow problem to decide which customer requests can be sat-
isfied without spending more costs in the relocation process than gaining
profit by satisfying customer requests (economic aspect, Section 3.4).

Note that both versions consider flows of cars in convoys, i.e., simultaneous
flows of cars and convoy drivers in the same network. Hereby, the two flows
are not independent or share arc capacities as in the case of multicommodity
flows, but are coupled in this sense that the flow of cars is dependent from
the flow of drivers (since cars can only be moved in convoys). The coupling
constraints for the two flows reflect the complexity of the studied problem (and
the constraint matrix of the resulting integer programming formulations is not
totally unimodular as in the case of normal flows).

We close with some remarks on the pros and cons of our approach and future
lines of research.

2 Problem Description and Model

In this section, we model the Relocation Problem in the framework of a metric
task system.

By [6], the studied Carsharing System can be understood as a discrete event-
based system, where

e the system components are the stations vy, ..., v,, each having an individ-
ual capacity cap(v;);

e a system state z' € Z" specifies for each station v; its load z! at a time
point ¢ < T within a time horizon [0, T7;

e an attribute att(v;,t) of station v; at time ¢ reflects the ratio between its
capacity cap(v;) and its current load z!, e.g. “overfull” or “underfull”;

e states and attributes can be changed by events (customers or convoy
drivers take or return cars at a station) or forecasts (customers book re-
quests or the operator generates transport requests).

To balance the load of the stations, an operator has to monitor the system
states and to decide when and how to move cars from “overfull” stations to
“underfull” ones, in order to fulfill all prebooked demands (Relocation Problem).

For that, the operator monitors the evolution of system states over time,
detects imbalanced stations and creates tasks to move cars out of “overfull”
stations and into “underfull” ones. More precisely, a task is defined by 7 =
(v,rel,due, x) where x € Z \ {0} is the number of cars to pickup (if z > 0) or
to deliver (if z < 0) at station v within a time-window [rel, due] C [0,T] of the
release date rel and the due date due. To fulfill these tasks, routes have to be
created for the convoys in order to perform the desired relocation process. For
that, it is suitable to encode the urban area where the Carsharing System is
running as a metric space M = (V,d) induced by a weighted graph G = (V, E)
with weight function w : E — R4, where the nodes correspond to stations,
edges to their physical links in the urban area, and the distance d between two
points v;,v; € V is the length of a shortest path from v; to v;. In V, we have a
distinguished origin v, € V, the depot of the system.

This together yields a metric task system, a pair (M, T) where M = (V,d)
is the above metric space and 7 a set of tasks, as suitable framework to embed
the routes for the convoys.

A truck able to lead a convoy plays the role of a server, the number of avail-
able trucks will be denoted by k. Each server has capacity C, corresponding to
the maximum possible number of cars per convoy; several servers are necessary
to serve a task 7 if z(7) > C holds.

More precisely, we define the following. Let f : N — N be a function with
f(0) = 0. An action for driver j is a 4-tuple a = (j,v, f(z),x), where v € V
specifies the station loc(a), f(z) is the time dur(a) needed to (un)load |z| cars,
and x € Z the number of cars Az(a) to be loaded (if © > 0) or unloaded (if
2 < 0). Hereby, the capacity of the convoy must not be exceeded, i.e., we have
|x] < C. An action is empty if x = 0. Note that for an empty action, by
definition of f we have f(z) = 0. We say that an action is performed (by a
driver) if he loads (resp. unloads) |z| cars at v.

For technical reasons, the vector z¢ € NIV represents the number of cars in
a station v at time ¢t before any action is performed.

A move from one station to another is a 7-tuple m = (j, v, t", w, t*, P, .,),
where j € {1,...,k} specifies the driver driv(m) that has to move from the
origin station orig(m) = v € V starting at time dep(m) = t¥ to destination
station dest(m) = w € V arriving at time arr(m) = ¢*, a load of foad(m) = x,,
cars in the convoy moving along the path path(m) = P. Hereby, we have the
following constraints:

(m.i) P is a shortest (v, w)-path,
(m.ii) from orig(m) # dest(m) follows arr(m) = dep(m)+d(orig(m), dest(m)).

A tour for a driver j is a sequence tour = (m',a',m? a?,...,a" ", m") of
moves and actions, with

(t.i) j = driv(m!) = driv(a') = - - = driv(a"t) = driv(m™"),
(t.ii) dest(m?) = loc(a’) = orig(m**1),
(t.iii) arr(m?) + dur(a®) = dep(m**1),

(biv) 0 < 2570m) — A(a) < cap(dest(m?)),

(t.v) load(m**1) = load(m®) + Ax(a'), and,
(t.vi) 0 < load(m?) + Az(a’) < C.
For a tour tour = (m',a',m? a2, ...,a" 1, m") we define the successive

action of a move m? by succ®(m?) = a’. A transportation schedule for a metric
task system (M, T) is a set of tours {tour!,..., tour*}, such that

(s.i) every driver has exactly one tour,
(s.ii) let A be the set of all actions then for every task 7 = (v, rel, due,z) € T

we have

Z Az(a) =z,

ac A’/
where A" = {a € A | a = succ®(m) Aloc(a) = v Arel < arr(m) <
arr(m) + dur(a) < due},

(s.ii) for all (v,t) € {(v,t) €V xT| (-,v,t,-) € A} we have
0< 2~ Z Az(a) < cap(v),
ac A
where A” = {a € A | a = succ*(m) Aloc(a) = v A arr(m) = t}.

Hereby, (s.ii) ensures that every task in 7 is fulfilled by one or more action(s),
and (s.iii) ensures that the capacity constraints of all stations are respected, i.e.,
there are never more than cap(v) cars parked in any station v.

Example 1 Counsider a metric space M = (V,d) induced by graph G = (V, E)
from Figure 1. The tasks are induced by customers requesting to take cars
from stations at a specific time point and returning them at a later time point
to a(nother) station. In this example, a customer requests to take a car from
station € at time 1 and requests to drop it at station D at time 7, another
customer wants to take a car from € at 1 and to drop it at € at time 3. Finally,
two customers request to take a car from B at 6, one dropping its car at A
at 7, the other requests to drop the car at C at time 8. The first two customer
requests are fulfilled without relocating cars. However, to fulfill the other two
requests, two cars must be transported to the station B, e.g., from €. This leads
to the following set of tasks 7 = {7! = (&,0,4,2),72 = (B,0,6,—2)}, i.e., two
cars have to be transported from € to B. The convoys have a capacity C' = 2.
For initial driver positions A and D, a possible transportation schedule for the
metric task system (M, 7) is then given by

(1,A4,0,&,1,{A, E},0), % move A — &
(1,€,0,1), % pickup 1 car (task 7')
(1,8,1,&,3,0,1), % wait at &
(1,&,0,1), % pickup 1 car (task 1)
(1,&,3,€,5,{&, A, B}, 2), % move & — B with 2 cars
(1,B,0,-2), % deliver 2 cars (task 72)
(2,D,0,D,5,0,0), % wait at E.
7.6
[A4(0/1) F—B(0/)|\6
8
17 2 e(1/0)
e2/0)E—=—[D(0
[eC/) F——{20/n] .-

Figure 1: This figure shows a graph G encoding a Carsharing System in an
urban area. Each station is drawn in a box. The box contains the name of the
station followed by the number of cars and the number of drivers located at the
station. Customer requests are drawn as dashed arcs between their pickup and
drop stations. The number near the requested pickup station denotes the time
point when the customer picks up the car, and analogously, the time point when
the customer drops the car is the number near the requested drop station. Each
station has a capacity of 3.

The Relocation Problem consists in constructing a transportation schedule
from a given metric task system (M, 7). The approach in [6] solves this problem
in two steps: generate firstly transport requests, secondly solve a PDP. In the
next section we propose to solve the Relocation Problem in one step by a min-
cost flow problem or a max-profit flow problem to integrate the decision problem
of accepting or rejecting customer requests.

3 Flows in Time-Expanded Networks

In this section we propose a way to solve the Relocation Problem in one step by
defining a time-expanded network with two coupled flows: a car and a driver
flow. The input for the Relocation Problem consists of the following data:

e A network G = (V, E) representing the set of stations V and the road (or
logical) connections F between them;

e Driving times w: £ — N encoded by weights on the edges of the network,
but no time to load/unload cars from convoys (i.e., we set f(z) = 0 for all
z in each action);

e Per unit costs cost®® and cost?" V" for moving cars and drivers within the
network;

e For each station v € V a capacity cap(v) € N on the number of cars
which can be present at this station at any moment in time, the quantities
2% () < cap(v) and z%1VeT (v) of cars and drivers located at v at the start

time ¢ = 0; the total number of drivers is denoted by k := Y oy, 2977 (v);

e The maximum number C € N of cars which can be simultaneously moved
in a convoy by a single driver;

e A sequence R = {ry,...,rp} of customer requests arriving over time,
where each request has the form r; = (pj;,v;,¢;,w;); p; € N denotes the
time when a car is requested to be picked up at station v; € Vg and will
be dropped at time ¢; € N at station w; € Vs. The time p; is called
requested pickup time; g; is called requested drop time.

e Per customer request profit p(r) for serving a customer request .

The output of the Relocation Problem is a transportation schedule for a
metric task system, whose tasks are directly induced by the sequence of customer
requests. Hereby, we consider two variants: we formulate both a min-cost flow
problem to serve all customer requests in R and a max-profit flow problem which
rejects customer requests from R whose profit is smaller than the relocation cost
to satisfy them.

For that, we build a directed graph G = (Vp, Ar), with Ap = Ay U AL U
AR U Ag as a time-expanded version of the original network G which includes
arcs Ar corresponding to the customer requests in R (see Section 3.1).

The cars and drivers will form two flows f°" and f4"Ver through Gz which
are coupled in the sense that on arcs a € Ay, (the relocation arcs) we have the
condition f#"(a) < C - f9rVer(q) reflecting the dependencies between the two
flows. Depending on the setting, we enforce a car flow on all arcs in Ag for the
min-cost flow problem (to guarantee quality of service, see Section 3.3) or only
on some arcs in Ag (corresponding to the subset of previously accepted requests)
for the max-profit flow problem (for economic reasons, see Section 3.4). In both
cases, the tasks are directly derived from the sequence R of customer requests.

3.1 Time-Expanded Networks

We build a time-expanded version Gr = (Vr, A7) of the original network G.

The node set Vr is constructed as follows. Let 7 = {0,...,7} be a finite
set of points in time, where the time horizon T is the maximum drop time of a
(vet known) request in R. For each station v € V' and each time point ¢ € T,
there is a node (v,t) € Vi which represents station v at time ¢ as a capacitated
station where cars can be picked up, delivered and exchanged by drivers. Fur-
thermore, it represents the station at time ¢ as a (geographical) transit node for
the drivers/convoys. In addition, there is a sink D.

The arc set Ay = Ag UA, UAR U Ag of G is composed of several subsets:

e For each station v € V of the original network and each ¢ € {0,1,...,T—1}
there is a holdover arc connecting (v,t) to (v,t+1). The set of all holdover
arcs is denoted by Ag.

e For each edge (u,v) of G and each point in time ¢ € T such that ¢ +
d(u,v) < T, there are relocation arcs from (u,t) to (v,t+ d(u,v)); the set
of all relocation arcs is denoted by Ay,.

e For each customer request r = (v,t,w,t’) € R we add an arc from (v, t)
to (w,t’); the set of all customer request arcs is denoted by Ag.

e There are sink arcs (denoted by Ag) connecting all nodes (v,T) € Vr to
the sink D.

Note, that by construction the time-expanded network is acyclic.

3.2 Flow Model

On the time-expanded network G, we define two different flows, the car flow
fer and the driver flow f9"Ver and specify the capacities as well as the costs
for each arc with respect to both flows.

A flow on a relocation arc corresponds to a (sub)move in a tour, i.e., some
cars are moved by drivers in a convoy from station w to another station wv.
Hereby, the stations can be used to pick up or to drop cars, or simply to transit a
node (when a driver/convoy passes the station(s) on its way to another station).
A relocation arc from (u, t) to (v,t+d(u,v)) has infinite capacity for the drivers.
However, in order to ensure that each driver moves at most C' cars in a convoy
and that cars do not move by themselves on such arcs, we require that for all
relocation arcs a the inequality

fer(a) < O - fAiver(g) for all a € Ap

holds. Thus, the capacities for f* on the relocation arcs are not given by
constants but by a function. Note that due to these flow coupling constraints,
the constraint matrix of the network is not totally unimodular (as in the case
of uncoupled flows) and therefore solving such problems becomes hard. Each
relocation arc a = ((u, t), (v,t + d(u,v))) corresponding to edge (u,v) has cost

¥ (a) := cost®™ - d(u,v) and IV (a) := costTV - d(u,v).

A flow on a holdover arc corresponds to cars/drivers remaining at the station
in the time interval [¢t,¢ + 1]. Therefore, the capacity of all holdover arcs with

0B, B, B, B, By By wmemty B s By By
R T e, e, es Co 67 e e :\J ‘D
1Dy Dy Dy : 935/-’/ Dy oy D o’y D wstd Dy ooy 93;/
T S Y ST

Figure 2: This figure shows an example of a time-expanded network Gr for
the graph G from Figure 1. Customer request arcs are shown as dashed arcs.
Every node of the form v; represents a station v at time ¢. The values %" (v, 0)
and b (D) are superscripted before the name of the station, and the values
pdriver (1. 0) and b3V (D) are subscripted. The driver flow f4Vr corresponding
to transportation schedule from Example 1 is indicated by dotted arcs, and the
car flow ff by dash-dotted arcs. The numbers at the arcs correspond to the
values of the flows, where the value f°"(a) is shown near the start node of the
arc a, and the value f4'V¢*(q) near the end node.

respect to flow f is set to cap(v), whereas there is no capacity constraint
for f9rver on such arcs. Moreover, the cost for both flows on such arcs is zero.

In order to reflect customer requests, we ensure that no driver uses an arc
in Ag (by setting its capacity to zero for the driver flow f9rVe") but set an
upper bound of 1 for the car flow f* (and eventually also a lower bound of 1).
Request arcs have no costs for both flows (but a profit for the max-profit flow
problem).

The sink arcs have infinite capacities with respect to the flow f° and to
the flow f¥ver and no costs.

To correctly initialize the system, we use the nodes (v,0) € Vr as sources
for both flows and set their balances accordingly to the initial numbers of cars
and drivers at station v and time 0, i.e.,

bcar(v,()) — zcar(v) and bdriver(v,o) — Zdriver(’l)>.

For all internal nodes (v,t) € Vp with ¢ > 0, we use normal flow conservation
constraints (which is possible due to the fact that the entire flow of cars is mod-
eled by taking both convoy moves and customer actions into account). Finnaly,
the sink D has

bcar(D) — Z anr(v> and bdriver(D) N Z Zdriver(v)-

veV veV

Figure 2 illustrates a time-expanded network with capacities on the arcs as
well as the balances for the nodes (v,0), D. Furthermore, both flows f* and
[from Example 1 are shown in this figure. Hereby, every customer request
is fulfilled, and thus, the figure shows a feasible solution for the Relocation
Problem.

3.3 Integer Linear Program for Min-Cost-Flow

In this subsection, we consider the version of the Relocation Problem that aims
at determining convoy routes at minimal costs to fulfill all yet known customer
requests from R, i.e., that focuses on the quality of service aspect). For that,
we present an integer linear program formulation for a min-cost flow problem
in the time-expanded network G = (Vr, A7) as follows:

min Z ccar (a)fcar (CL) + Z Cdriver (a)fdriver (a) (1a)

a€Arp a€Ap
Y [™(a) =6 (v,0) vV (v,0) € Vp (1b)
a€d— (v,0)
Z fdriver(a) _ bdriver(,l}’()) v (’U,O) e Vp (1(3)
a€d— (v,0)
S @ - Y fM(a) =0 V(o t)€Vet>0 (1d)
a€d— (v,t) a€dt(v,t)
oY@ - Y @) =0 YV (v,t) eVrt>0 (le)
a€d— (v,t) ac€dt(v,t)
> [(a) = b2 (D) (v,T) € Vr (1f)
a€As
Z fdriver(a) _ bdriver(D) (’U,T) € Vr (lg)
a€Ag
0 < [(a) < cap(v) Va = [(v,0), (vt + 1)] € Ag
(1h)
fcar(a) < C - fdriver(a) Vae AL (11)
) =1 VaeApg (1j)
faver(g) =0 VacAg (1k)
fcar, fdriver integer, (11)

where ™ (v, t) denotes the set of outgoing arcs of (v,t), and §¥ (v, ¢) denotes the
set of incoming arcs of (v,).

The objective function (1a) measures and minimizes the costs of transport-
ing cars in convoys between the stations. Equalities (1b) (resp. (1c)) give the
number of cars (resp. drivers) at time 0 for each station. The conditions (1d)
and (1e) are the flow conservation constraints for the flows f¢* and f4r'ver, The
equalities (1f) and (1g) ensure that all drivers and cars reach the sink node D.
The constraints (1h) give the capacities for f® on holdover arcs which is equal
to the capacity of the corresponding station; and the constraints (1i) couple the
two flows @ and fd"Ver so that cars on relocation arcs cannot move without
drivers. The capacities for the customer request arcs are modeled by equali-
ties (1j) and (1k). Equalities (1j) ensure that each customer request is served,
while equalities (1d) ensure that drivers do not use “shortcuts” within the net-
work.

Theorem 2 Let (M,T) be a metric task system. Then the following three
statements are equivalent

(i) There ezists a solution for the Relocation Problem.

(ii) There exist flows f4°" and f°" satisfying the (in)equalities (1b) to (11).

3.4 Integer Linear Program Max-Flow-Problem

In this section we consider a max-profit flow problem to decide which customer
requests can be satisfied without spending more costs in the relocation process
than gaining profit by satisfying customer requests. This leads to a Max-Profit
Relocation Problem, where the input data specifies, besides all input data from
the Relocation Problem, also a profit p(r) for each customer request r € R.

To take the dynamic evolution of the customer requests into account, we
partition R into two subsets: R? of previously accepted customer requests and
RN of newly released customer requests.

The output of the Max-Profit Relocation Problem is a a subset of accepted
customer requests R' C R and a transportation schedule for a metric task
system, where the tasks are induced by

e the set of previously accepted customer requests,
e the set of newly released customer requests,

e and the decision which newly released customer request is accepted and
thus fulfilled.

A customer request must be either completely fulfilled or completely rejected.
In order to achieve this, we adjust the time-expanded network G = (Vip, Ay U
A U Agr U Ag) by considering two subsets Ara U Agn according to the two
request subsets R4 and RV .

The integer linear program we present for the Max-Profit Relocation Prob-
lem is very similar to the one solving the Relocation Problem ((1a) — (11)). Be-
sides the objective function, we only adjust equalities (1j). Instead of f¢?'(a) = 1
for all customer request arcs, we set f(a) = 1 for all a € Ara, to ensure that
previously accepted customer requests are fulfilled. For every newly released
customer request, we bound the corresponding arc ¢ € Ar~v by [(a) < 1.
These inequalities ensure that customer requests can be rejected whenever they
have not been accepted a priori, e.g., if the costs for serving the corresponding
customer request is more expensive than the profit.

An integer linear program for the Max-Profit Relocation Problem can be
given as follows:

max Z fcar _ Z (‘ar(fcar Z cdrlver fdrwer(a) (2&)

a€AR acAr, acAr

Z £ (a) = b (v, 0) V (v,0) € Vp (2b)
a€d— (v,0)

Z fdriver(a) _ bdriver(v’ 0) \ (U,O) e Vr (QC)
a€d— (v,0)

Z fcar(a) _ bcar (D) (2d)
a€d— (v,T)

Z fdriver (CL) — bdriver(D) (26)
a€d— (v,T)

10

Soofa) - > fa)=0 Y (v,t) € Vip,t >0 (2f)

ags—(v,t) ags+ (v,t)
Z fariver(g) — Z fIver(@) =0 V (v,t) € Vp,t >0 (2g)
a€d— (v,t) a€dt(v,t)
0 < f**(a) < cap(v) Va=][(vt),(v,t+1)] € An
(2h)
e (a) < C - fdriver(q) VaeAp (2i)
" (a) <1 Va€ Aps (2i)
f®a)=1 Vae Agra (2k)
fAver(g) =0 Vaée AraUApn (21)
fear | pdriver integer, (2m)

where 7 (v, t) denotes the set of outgoing arcs of (v,t), and §* (v, t) denotes the
set of incoming arcs of (v,t).

Theorem 3 The Max-Profit Relocation Problem has a feasible solution if and
only if the Relocation Problem has a feasible solution with R as the input
sequence of customer requests.

Example 4 We consider the graph G from Figure 1 and the time-expanded
network from Figure 2, respectively. In this example, no customer request is
previously accepted, i.e., R4 = (). Depending on the profit given by serving
the customer requests r® = (6,B,7,A) and/or r* = (6,B, 8, C) and the costs of
moving cars to station B, e.g., from &, the requests are either served or rejected.

Let us assume that the costs are cost®® = 1 and cost®V®" = 2. Then
the costs for moving one car by driver 1 (or by driver 2) from € to B is 8, and
moving two cars is 10. By assuming profits p(r?) = 1 and p(r*) = 9, the profit is
maximized when 7 is served and 72 is rejected (see Figure 3). Setting p(r?) = 7
results in a rejection of both customer requests, while changing only p(r3) = 3
ensures that both are served. Obviously, similar results can be obtained by
changing the costs for the drivers and/or cars.

4 Conclusion

In this paper, we considered the Relocation Problem for Carsharing Systems
with semi-autonomous cars. Problems of this type can be modeled as Pickup
and Delivery Problem in a metric space induced by the urban area [6] or, al-
ternatively, by means of coupled flows of cars in convoys in a time-expanded
network. The here discussed setting is similar to the balancing problem in Bike-
sharing Systems (where trucks are used to move several bikes) as in [3-5], but
differs in an important aspect: prebooking of customer requests.

We discuss two variants of the Relocation Problem: a min-cost flow problem
and a max-profit flow problem. In the min-cost flow problem we determine
convoy routes at minimal costs to fulfill all given customer requests (with focus
on the aspect of Quality of Service), while in the max-cost flow problem we
decide in addition which customer requests can be satisfied without spending

11

0B, B, By By By By —mims B s By By
(TR O e, e, es e ;?;\\\”es ----- :‘u D
1Dy Dy D, : 935/-’/ Dy oy D v’y D ws'd Dy ooy Dgl'/

T28g o & i &y xak 53 o 84 &s &6 & &s

Figure 3: This figure illustrates the Max-Profit Relocation Problem. Hereby, it
shows a time-expanded network Gp for the graph G from Figure 1. Customer
request arcs are shown as dashed arcs. Every node of the form v; represents a
station v at time ¢. The values b (v, 0) and b®* (D) are superscripted before the
name of the station, and the values 69"V (v, 0) and b¥1v*(D) are subscripted.
The driver flow f&iver corresponding to transportation schedule from Example 1
is indicated by dotted arcs, and the car flow f°@* by dash-dotted arcs. The
numbers at the arcs correspond to the values of the flows, where the value
f¢a(a) is shown near the start node of the arc a, and the value f9°*(q) near
the end node. The value on a customer request arc corresponds to whether or
not the corresponding request is accepted 1 or rejected 0.

more costs in the relocation process than gaining profit by satisfying customer
requests (with focus on the economic aspect).

Unlike in the case of uncoupled flows, the constraint matrix of the time-
expanded network is no longer totally unimodular, and reflects the complexity
of the Relocation Problem.

For both variants of the Relocation Problem, solving the proposed integer
programming formulations yields an exact solution for the offline situation: a
feasible transportation schedule either serving all customer requests at mini-
mal cost (if it exists) or maximizing the profit (but eventually rejecting certain
requests). This is in contrast to the flow formulation proposed in [4] for bike-
sharing. There, customers do not book their requests in advance and the goal
is to avoid imbalance. For that, two variables per station are considered to
reflect their imbalance and the objective is to minimize the total imbalance. As
reported in [4], a solution returned by this flow model may require to create or
destroy bikes at a station, which leads to an infeasible solution. In contrary,
our models keep correctly track of the entire flow of cars (and drivers) in the
time-expanded network such that any solution indeed corresponds to a feasible
transportation schedule (see Theorem 2 and Theorem 3).

In order to handle the online situation, we expect that heuristics based on
the two flow formulations can be used. For that, we propose to identify suitable
subproblems and to reduce the time-expanded network in two directions:

e omit stations (which are in balance) and relocation arcs which do not carry
flows with a certain probability;

e identify an appropriate time interval within the considered time horizon to
perform the relocation process and/or use a more coarse time discretiza-
tion.

12

The goal is to decrease the expected computation times of the heuristics in such
a way that, for instance, the decision to accept or reject one newly released cus-
tomer request can be given immediately (starting from the previously computed
solution for the previously accepted requests).

We further plan to extend the time-expanded network in several ways, mod-
eling different additional aspects of the Relocation Problem. Currently, picking
up or dropping a car at a station does not consume any time. Including non-zero
durations for such actions in the model is one of our next goals.

Moreover, the time needed for driving from one station to another in an
urban area usually depends on the hours of the day. For example, during rush
hours, a longer route can be faster than a shorter one, with respect to the
distance. Hence, including day time-dependent travel times into our model is
also planed for the future.

References

[1] M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, edi-
tors. Network Models, volume 7 of Handbooks in Operations Research and
Management Science. Elsevier Science B.V., Amsterdam, 1995.

[2] M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, edi-
tors. Network Routing, volume 8 of Handbooks in Operations Research and
Management Science. Elsevier Science B.V., Amsterdam, 1995.

[3] Mike Benchimol, Pascal Benchimol, Benoit Chappert, Arnaud de la Taille,
Fabien Laroche, Frédéric Meunier, and Ludovic Robinet. Balancing the

stations of a self service “bike hire” system. RAIRO - Operations Research,
45:37-61, 0 2011.

[4] Daniel Chemla, Frédéric Meunier, and Roberto Wolfler Calvo. Bike sharing
systems: Solving the static rebalancing problem. pages 120-146, 2013.

[5] C. Contardo, C. Morency, and L-M. Rousseau. Balancing a dy-
namic public bike-sharing system. Technical Report 9, CIRRELT, 2012.
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf.

[6] Sven O. Krumke, Alain Quilliot, Annegret Wagler, and Jan-Thierry We-
gener. Models and algorithms for carsharing systems and related prob-
lems. In Proceedings of the VII Latin-American Algorithms, Graphs, and
Optimization Symposium, 2013. To appear in: Electronic Notes of Discrete
Mathematics.

[7] G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, edi-
tors. Optimization, volume 1 of Handbooks in Operations Research and
Management Science. Elsevier Science B.V., Amsterdam, 1989.

13

