2,111 research outputs found

    Learning mathematics in a classroom community of inquiry

    Get PDF
    This article considers the question of what specific actions a teacher might take to create a culture of inquiry in a secondary school mathematics classroom. Sociocultural theories of learning provide the framework for examining teaching and learning practices in a single classroom over a two-year period. The notion of the zone of proximal development (ZPD) is invoked as a fundamental framework for explaining learning as increasing participation in a community of practice characterized by mathematical inquiry. The analysis draws on classroom observation and interviews with students and the teacher to show how the teacher established norms and practices that emphasized mathematical sense-making and justification of ideas and arguments and to illustrate the learning practices that students developed in response to these expectations

    Understanding technology integration in secondary mathematics: Theorising the role of the teacher

    Get PDF
    Previous research on computers and graphics calculators in mathematics education has examined effects on curriculum content and students’ mathematical achievement and attitudes while less attention has been given to the relationship between technology use and issues of pedagogy, in particular the impact on teachers’ professional learning in specific classroom and school environments. This observation is critical in the current context of educational policy making, where it is assumed – often incorrectly – that supplying schools with hardware and software will increase teachers’ use of technology and encourage more innovative teaching approaches. This paper reports on a research program that aimed to develop better understanding of how and under what conditions Australian secondary school mathematics teachers learn to effectively integrate technology into their practice. The research adapted Valsiner’s concepts of the Zone of Proximal Development, Zone of Free Movement and Zone of Promoted Action to devise a theoretical framework for analysing relationships between factors influencing teachers’ use of technology in mathematics classrooms. This paper illustrates how the framework may be used by analysing case studies of a novice teacher and an experienced teacher in different school settings

    Improved methods for the travelling salesperson problem with hotel selection

    Get PDF
    In this talk, a new formulation and a new metaheuristic solution procedure for the travelling salesperson problem with hotel selection (TSPHS) is presented. The metaheuristic is a multi-start procedure that outperforms existing heuristics on all benchmark instances. We also provide a number of new optimal solutions found by a commercial solver extended with a dedicated cutting plane procedure, as well as new best known solutions for most benchmark instances

    Mode expansion for the density profile of crystal-fluid interfaces: Hard spheres as a test case

    Full text link
    We present a technique for analyzing the full three-dimensional density profiles of a planar crystal-fluid interface in terms of density modes. These density modes can also be related to crystallinity order parameter profiles which are used in coarse-grained, phase field type models of the statics and dynamics of crystal-fluid interfaces and are an alternative to crystallinity order parameters extracted from simulations using local crystallinity criteria. We illustrate our results for the hard sphere system using finely-resolved, three-dimensional density profiles from density functional theory of fundamental measure type.Comment: submitted for the special issue of the CODEF III conferenc

    Translating the principles of Bio2010 into practice

    Get PDF

    Lateral shift of the transmitted light beam through a left-handed slab

    Full text link
    It is reported that when a light beam travels through a slab of left-handed medium in the air, the lateral shift of the transmitted beam can be negative as well as positive. The necessary condition for the lateral shift to be positive is given. The validity of the stationary-phase approach is demonstrated by numerical simulations for a Gaussian-shaped beam. A restriction to the slab's thickness is provided that is necessary for the beam to retain its profile in the traveling. It is shown that the lateral shift of the reflected beam is equal to that of the transmitted beam in the symmetric configuration.Comment: 14 pages, 4 figure

    A hard-sphere model on generalized Bethe lattices: Statics

    Full text link
    We analyze the phase diagram of a model of hard spheres of chemical radius one, which is defined over a generalized Bethe lattice containing short loops. We find a liquid, two different crystalline, a glassy and an unusual crystalline glassy phase. Special attention is also paid to the close-packing limit in the glassy phase. All analytical results are cross-checked by numerical Monte-Carlo simulations.Comment: 24 pages, revised versio

    Message passing for vertex covers

    Full text link
    Constructing a minimal vertex cover of a graph can be seen as a prototype for a combinatorial optimization problem under hard constraints. In this paper, we develop and analyze message passing techniques, namely warning and survey propagation, which serve as efficient heuristic algorithms for solving these computational hard problems. We show also, how previously obtained results on the typical-case behavior of vertex covers of random graphs can be recovered starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR

    A sociocultural analysis of the development of pre-service and beginning teachers’ pedagogical identities as users of technology

    Get PDF
    This paper reports on a study that investigated the pedagogical practices and beliefs of pre-service and beginning teachers in integrating technology into the teaching of secondary school mathematics. A case study documents how one teachers modes of working with technology changed over time and across different school contexts, and identifies relationships between a range of personal and contextual factors that influenced the development of his identity as a teacher. This analysis views teachers learning as increasing participation in sociocultural practices, and uses Valsiners concepts of the Zone of Proximal Development, Zone of Free Movement, and Zone of Promoted Action to offer a dynamic way of theorising teacher learning as identity formation
    corecore