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Abstract: As authorities worldwide are cutting public transportation funds, finding cost-

effective means to provide public transport in underserved areas has become ever important. 

One of such means is Demand-Responsive Transport (DRT), a type of transport where supply is 

adjusted based on passenger demand. Although DRT schemes have existed since the 1960s, the 

rise of portable electronic devices like smartphones have enabled DRT schemes which can 

instantly respond to new passenger requests. These systems are classified as dynamic DRT, and 

while they can provide more tailored transport to passengers, these systems often become 

overwhelmed in higher-demand scenarios. To that end, semi-flexible DRT systems have been 

emerging, where only part of a vehicle trip can be adapted according to demand. In this paper, 

both dynamic and semi-flexible DRT models are compared with each other through a 

programme which simulates DRT model behaviour based on passenger requests. Using 

different stop density and demand level scenarios, it is assessed how well both models perform 

under these varying scenarios. Through the construction of relevant metrics, user and operator 

benefit are assessed, and recommendations are made which DRT model can best serve as a 

blueprint for affordable public transport in different types of areas. From the simulation results, 

it is determined that dynamic DRT systems are only feasible in areas with very low travel 

demand (between 4 and 8 trip requests per hour), and with a limited amount of bus stops where 

passengers can be picked up or dropped off. For higher demand levels, semi-flexible DRT 

systems perform better regarding pickup and drop-off time reliability and regarding the 

minimization of excess travel time for passengers. 

Keywords: Demand Responsive Transport, DRT, semi-flexible DRT, dynamic DRT, medium-

demand public transport, DRT simulation, delay, detours, vehicle load  
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Introduction 

As national and local governments alike are aiming to reduce car use among its population, 

multiple ways are being sought to reduce overall car dependency. The promotion of alternative 

transportation modes like cycling and public transport often make sense in an urban setting. 

However, in rural settings, the introduction or enhancement of public transport is often too costly 

for the level of demand it can serve. Therefore, in recent years, local authorities have sought to 

find a more cost-effective way of serving areas with low transport demand. Demand-Responsive 

Transport (DRT) is a form of public transport which has been increasingly utilized in areas where 

regular public transport is not deemed cost-effective. DRT uses, in contrast to regular public 

transport, flexible routing, flexible time tabling, or both, in order to be able to either serve more 

transportation demand for similar costs, or serve similar transportation demand for fewer costs. 

 

Although DRT has been a concept for several decades now, the rise of information technologies 

has made DRT more accessible to use for end-users. While 20th-century DRT systems made use 

of calling services in order for end-users to be able to make a reservation, nowadays users can 

access information and book a trip through mobile applications and mobile browsers. This has 

enabled the development of dynamic DRT systems where users can book their trip on a bus in 

real-time, making the bus modify its route in real-time in order to fulfil the new request. While 

this has greatly reduced the barrier for DRT use and increased flexibility for users, it has also 

made DRT services less predictable and therefore less reliable for users. Also, it has been noted 

that dynamic DRT systems might not be able to serve as much demand as static DRT systems, 

where the vehicle itinerary is always pre-determined. This has given rise to ‘semi-flexible’ DRT 

systems, which still make use of a predefined route, but allow certain deviations from this central 

‘trunk’ based on passenger demand. 

 

Semi-flexible DRT systems have different definitions, varying from a limited number of optional 

stops outside of a fixed bus route, up until a complete set of optional stops, with only a departure 

stop, a terminal stop and a stop sequence defined. In this thesis, the performance of this latter 

definition of semi-flexible DRT systems will be compared to the performance of dynamic DRT 

systems. 

 

In contrast to literature assessing the differences between regular public transport and dynamic 

DRT systems, the performance of dynamic DRT systems against semi-flexible DRT systems has 

not been studied extensively. This thesis will therefore provide new insights to what degree 

external factors influence DRT system performance. Under varying demand levels and pickup 

and drop-off node densities, it is assessed how both DRT systems perform. Through the 

construction of two simulations, one for each DRT system, it will be studied how both models 

process different levels of demand and different pickup and drop-off spot densities. Both models 

will be compared on reliability, passenger aggregation and passenger time spent on the vehicle. 

From these insights, it can be assessed under which demand levels and population densities each 

model performs best. 
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Definition of Concepts 

DARP: Dial-A-Ride Problem 

DRT: Demand-responsive Transport 

Expected trip request rate: the expected value of the average number of trip requests per hour 

in a simulation. For example, when this rate is 8 trip requests per hour, it is expected that on 

average, 8 trip requests per hour are made in the simulation. 

Dynamic DRT: model of DRT where a vehicle can change its itinerary freely based on real-time 

requests. 

Model: system of DRT used. In this paper, a distinction is made between the dynamic and semi-

flexible DRT model. 

Node density: the number of pickup and drop-off nodes in the DRT area. 

RPH: Requests Per Hour. In the simulations, this indicates the expected number of random 

requests to be generated per hour 

Scenario: instance of DRT under certain parameters. These are the node density and the expected 

trip request rate. 

Semi-flexible DRT: model of DRT where a vehicle needs to visit nodes in a sequential order, 

also known as the trunk route. This model also forces the vehicle to operate in separate itineraries 

(headways). 

Simulation: one calculation of a specific DRT scenario, returning a traversed route and a list of 

served trip requests. 

Trip request: a request in a simulation with a pickup node, drop-off node, time of pickup and 

number of passengers. 

Trunk route: the sequence of nodes to visit in the semi-flexible DRT model. 

TSP: Traveling Salesman Problem. 

Vehicle load: number of passengers in a vehicle at a specific time. 

VRP: Vehicle Routing Problem.  
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Literature Review 

In recent years, there has been an increase in research on varying DRT models. This section 

provides an overview of the state of the art in research on the viability of different DRT schemes. 

 

Demand-Responsive Transport 

Demand-responsive Transport, commonly abbreviated to DRT, is the concept of transport 

services which adapt their routing and/or scheduling based on passenger demand. These transport 

services can range from mobility services at events to tailored medical transportation to full-

fledged public transport systems. The rule of thumb is, however, that overall demand should be 

low (Papanikolaou & Basbas, 2020), in order to not overwhelm the system with requests, which 

it cannot all fulfil at once. Therefore, DRT systems are most commonly found as rural public 

transport or as transport for people with reduced mobility. 

 

History of DRT 

Transport tailored to fulfilling individual travel needs outside of mass transit dates back to the 

20th century. With national and local governments recognizing the needs of the elderly and 

physically impaired, it became apparent that a tailored mobility solution needed to be created for 

this specific target audience. 

 

As far as literature shows, research on DRT algorithmics and systems began in the 1960s with the 

Harvard CARS project (Wilson et al., 1969). The first real strides towards DRT systems began in 

North America and the UK in the 1970s (Ho et al., 2018). Under the name of ‘paratransit’, or 

‘dial-a-ride’ certain cities and regions began offering limited services to people for whom regular 

public transport was not a feasible option (Lave & Mathias, 2000). However, this was a very 

specific service, viewed completely separately from existing public transport, offering limited 

service, and for which only a limited number of people was eligible. After the Americans with 

Disabilities Act of 1990 (ADA), it was made mandatory to offer unconstrained complementary 

paratransit service, after which paratransit became widespread in the US (Lave & Mathias, 2000). 

 

DRT also developed in Europe during the 1970s (Coutinho et al., 2020). These systems were 

often inspired by their North American counterparts. Over time, services also began to spread to 

areas where regular public transport was not financially viable, expanding the target audience 

towards anyone who lives in sparsely-populated areas. 

 

However, DRT remained focused on the elderly and physically impaired throughout the 1990s 

and 2000s. Palmer et al. (2004) define DRT as “means by which ‘comparable transportation 

services’ are provided to mobility impaired individuals”. 

 

DRT as public transport in sparsely populated areas 

Even though the focus of DRT has mostly been on serving mobility-impaired people, it has 

increasingly been used as a substitute for, or complement to, public transport (Ho et al., 2018). 

Especially in times of austerity measures by governments and general unwillingness to subsidize 

low-demand public transport (Gomes et al., 2015), alternative solutions have to be sought to 

maintain an acceptable level of public transport in these areas. 
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DRT services have been trialled as a public transport substitute in several cases. A case in a rural 

area near Amsterdam, the Netherlands (Coutinho et al., 2020) showcase that the average distance 

driven per passenger decreased, but that ridership overall also decreased. 

 

In order to decrease operational costs of DRT systems, models have been proposed where DRT 

acts as a feeder for the mobility impaired to fixed-route bus services (Posada et al., 2017). 

However, this comes with a big cost to users: changing twice between transport modes for one 

trip is inconvenient, especially for the physically impaired. 

 

The Dial-A-Ride Problem 

With the dispersion of DRT systems, the so-called ‘dial-a-ride problem’ (DARP) arose with it. 

Cordeau & Laporte (2007) state that: 

 

 “The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and schedules 

for n users who specify pickup and delivery requests between origins and destinations.” 

 

The DARP is a variant of the well-known Traveling Salesman Problem (TSP), which aims to 

obtain the shortest route which visits all nodes in an area. Because the DARP is an extension of 

the TSP, several constraints are set in order to resemble a real-life dial-a-ride system. These 

include: 

 -Vehicle capacity (Parragh et al., 2012), (Wong & Bell, 2006) 

-Route duration (Wong & Bell, 2006), (Jain & Van Hentenryck, 2011) 

-Set routing starting and ending points (Ho et al., 2018) 

-Driver working hours and lunch breaks (Parragh et al., 2012) 

 -Time window constraints (Xiang et al., 2006), (Jain & Van Hentenryck, 2011) 

 -Maximum waiting time constraints (Hunsaker & Savelsbergh, 2002) 

 

Under (part of) these constraints, research has been done on the DARP for several decades. Wong 

& Bell (2006) state that solution methods for the DARP can be broadly separated into exact 

methods and heuristic algorithms. Exact methods aim to make a mathematical formulation of a 

DARP which can then algorithmically be found an optimal solution for. However, this is often 

not possible in practice due to excessive computing time. Heuristic methods iteratively try to find 

a good-enough solution through an algorithm which generates an acceptable solution within an 

acceptable amount of time. For practical implementations, heuristic methods like Integer Linear 

Programming (ILP) or simulations often can provide an insight in the performance of systems. 

 

Static versus dynamic dial-a-ride problems 

DARPs, and to an extension DRT models, can generally be categorized into static and dynamic 

systems (Cordeau et al., 2007). In static systems, all trip requests are known beforehand, while in 

dynamic systems, users are able to request a trip at any time, making it possible for vehicle routes 

to be adapted even when the trip has already started (Cordeau et al., 2007). These two different 

systems differ significantly in terms of passenger capacity, reliability, and flexibility. Depending 

on the conditions of a certain service area, and the priorities of the operator and local authorities, 

decisions are made on which kind of DRT system to use.  

 

Cordeau et al. (2007) identify that most transport on demand problems have the conflicting 

objectives of maximizing the number of requests served, minimizing operational costs and 

minimizing user inconvenience. Operators and governments need to account for all these factors, 

making the choice of which type of public transport to use very case-specific. 
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Recent research has suggested that a deviation from fully dynamic, DRT models might be 

beneficial for system reliability and affordability. (Sörensen et al., 2021) identify that, even in 

very rural areas, DRT trips tend to aggregate around central axes, or trunks. Therefore, it is 

interesting to look at DRT models which exist between static and dynamic models: semi-flexible 

models. 

 

Semi-flexible DRT 

The traditional setup of DRT systems is fully flexible, meaning that vehicles can take any possible 

route between the given pick-up and drop-off points, whether these are door-to-door services or 

fixed bus stops. However, this might increase traveling time significantly, as new users can 

request a ride at any moment from any available point. In order to increase reliability of pick-up 

time and service availability, additional constraints, on top of the usual constraints, can be 

introduced. These are: 

 

-A fixed ‘trunk route’, which connects all the pickup and drop-off nodes in the system. Each 

vehicle itinerary is based on this route; however, it will only visit a node if there is demand for it. 

This means that the trunk is essentially an order of nodes to be visited. 

-A fixed headway: because the vehicle traverses this trunk, the service is divided in itineraries. 

For example, a vehicle can have two itineraries per hour, one in each direction. This makes the 

headway one hour in each direction. 

 

By enforcing these constraints, passenger trip requests will automatically be assigned to a certain 

itinerary. It is possible for passengers to make requests while the vehicle has already started its 

itinerary; however, the passenger can only travel in the same itinerary if the vehicle has not passed 

the pickup point of the passenger yet. 

 

Both constraints reduce the flexibility of the system, but increase reliability, and potentially 

financial feasibility of the system. Therefore, this type of DRT will be called ‘semi-flexible’: 

vehicles can operate flexible routes and times within the bounds of the routing graph and the 

timeslot given. 

 

Current literature on semi-flexible DRT systems 

In existing literature, semi-flexible DRT is most often defined as a system where a bus in principle 

follows a fixed route, but is allowed to make certain deviations on certain sections based on 

demand (Koffman, 2004; Li et al., 2023; Mishra & Mehran, 2023). This is different than the 

version used in this paper, since the version in this paper does not contain mandatory routes; just 

a sequence of stops which has to be traversed if they have demand. However, both systems are 

still comparable, since there still is a mandatory starting and end node, of which the path is altered 

based on demand. 

Existing literature suggests that semi-flexible DRT, as defined in most literature, is cheaper to 

operate than dynamic DRT (Li et al., 2023; Mishra & Mehran, 2023), and can act as a cost-

effective means of supplying high-quality public transport, often in combination with fixed public 

transport or bicycle sharing systems (Bruzzone et al., 2020). However, literature about the exact 

benefits of semi-flexible DRT is sparsely available, especially for users themselves. Direct 

comparisons between user costs and benefits regarding both DRT systems could not be found in 

literature.  

In order to determine which type of public transport fits best in an area, or more specifically, 

which type of DRT to choose, it is important to have knowledge about both operator and user 
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costs (Papanikolaou et al., 2017), of which especially the latter is often unknown. Therefore, a 

direct comparison between dynamic and semi-flexible DRT can provide new insights in order for 

local authorities and public transport operators to make more informed decisions about which 

type of DRT to use. 

 

Linear programming approach for DRT system modelling 

Currently, DRT model performance is often assessed through linear programming (Alonso-Mora 

et al., 2017; Li et al., 2021, 2023; Mehran et al., 2020; Mishra & Mehran, 2020). Linear 

programming entails the maximization or minimization of a certain value based on predefined 

constraints. In DRT modelling, this is especially useful, since the minimization of either operator 

costs or user costs are mostly sought after, as well as the maximization of benefits. 

Operator and/or user costs are aimed to be minimized according to a set of constraints. These 

constraints should represent real-life conditions as much as is feasible. For example, constraints 

which are often implemented are constraints on the operator side include time windows (Mishra 

& Mehran, 2020), vehicle fleet size and vehicle capacities (Cordeau & Laporte, 2007), (Mishra 

& Mehran, 2020), headways, mandatory stops (Li et al., 2023) and depot locations (Li et al., 

2021). On the other hand, constraints on the user side include preferred pickup times (Li et al., 

2021), maximum waiting time and delay constraints (Alonso-Mora et al., 2017). These constraints 

all need to be satisfied while minimizing costs defined by total distances driven (Cordeau & 

Laporte, 2007), total operational hours (Mishra & Mehran, 2020), and the sum of all delays 

(Alonso-Mora et al., 2017). 

While constraints can be fairly easily defined in linear programming, actually calculating certain 

costs, especially vehicle distances driven, is not as straightforward. For this, many different 

algorithms exist which can find a good routing scheme in an acceptable amount of runtime that 

serves a certain number of locations. Such algorithms often employ an initial heuristic, to 

construct an initial feasible route for an acceptable cost, and then iteratively improves on it with 

a metaheuristic. VRP algorithms often include construction heuristics (Konstantakopoulos et al., 

2022). Construction heuristics construct a feasible path by finding the lowest cost arcs (usually 

the shortest path) for small routes, and connecting them together to create overall low-cost routes 

(Hoos & Stützle, 2005). These heuristics often employ local search heuristics as a metaheuristic 

to find improvements in local (small) parts of the route. 

In order to define operator and user costs between dynamic DRT and semi-flexible DRT, linear 

programming will also be used to define the theoretical model and constraints of both DRT 

models. Through a Python program, both DRT models will be simulated. Using the Google OR-

tools library as a route searching tool for dynamic DRT simulation, and as a tool to determine the 

shortest trunk distances in semi-flexible DRT, data passenger trip handling and vehicle routing in 

both models can be obtained and used for constructing metrics. 
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Research Approach 

Two different DRT models are analysed in this paper: dynamic and semi-flexible DRT models. 

They are simulated in a virtual area of 1 by 1, with pickup and drop-off nodes spread randomly 

in the area. In this section, both models will be described in detail. 

Dynamic DRT 

Dynamic DRT is defined as the model in which a vehicle tries to serve all the requests which are 

currently submitted to the system. In other words, it always follows a route calculated to serve all 

pending requests in the shortest amount of time possible. This has the consequence that the 

complete route can change once one new request has entered the system. Due to this principle, 

each time a new request enters the system, a new route has to be calculated for the vehicle that 

satisfies two constraints: 

• To satisfy each trip request, a pickup node should always come before its drop-off node 

• The route to serve all requests should be as short as possible 

After a new route has been calculated, the bus follows the new route until a new request comes 

in. At that moment, the route is recalculated to serve all pending and unserved requests, as well 

as the new request, and the process repeats. 

For example, in figure 1, a simulation is started 

with 10 initial requests. For these requests, a 

route is calculated. The bus starts at node 20. 

In figure 2, the simulation at time t=1100 is 

shown. Three requests have been completed, 

three are underway and four are yet to be 

started. At this time, a new request enters the 

system, with pickup node 19 and drop-off node 

17. A new route is calculated based on this new 

request, as well as the nodes that already had 

to be visited based on requests that are 

underway and requests that still need to be 

started. This results in the route in figure 3. his 

route will then be followed until a new request 

comes in, after which the process is repeated. 

 

 

 

 

 

 

Figure 1: Example of the initial route and 

requests of a dynamic DRT simulation. 
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Figures 2 (left) and 3 (right): Served (green), pending (orange) and yet to be served requests 

(red) at the moment a new trip request enters the system. The bus has completed the green 

segments, is traversing the orange segment and has yet to traverse the red segments. The route to 

be travelled (red) is altered due to the new request entering the system. 

This processing and entering of trip requests can in theory go on endlessly. For modelling 

purposes, a 6-hour window is simulated. 

Semi-flexible DRT 

The semi-flexible DRT model makes use of the same virtual service areas as dynamic DRT, with 

the same nodes, but also has a trunk route defined. This route has been obtained by running a TSP 

over the field of nodes, and therefore is a short distance to serve all nodes in the field. The vehicle 

in the system travels between the first and last node in this system, and vice versa, in sequential 

itineraries. The vehicle serves each trip request in the order of the trunk sequence. If a trip request 

is in the reverse order compared to the trunk sequence, it will only be satisfied in the next itinerary. 

Given these rules, three constraints apply to semi-flexible DRT: 

• To satisfy each trip request, a pickup node should always come before its drop-off node 

• To adhere to the trunk node sequence, a pickup node should always become before its 

drop-off node in the sequence 

• An itinerary should always run from the first node in the trunk sequence to the last. 

The second constraint has the result that when a new trip request is generated, but the vehicle has 

already passed its pickup node in the running itinerary, the trip request can only be satisfied in the 

second itinerary after it. 
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An example of request handling in the semi-flexible DRT model can be found in figures 3, 4 and 

5. In figure 3, an initial set of requests enters the system. Only the requests which adhere to the 

trunk sequence are processed into the route. After t = 900, the system receives a new request,  

Figures 3, 4 and 5: Example of the initiation of an iteration of a semi-flexible DRT simulation. 

from node 7 to node 5. Since the bus is still located before node 7, and node 5 comes after node 

7 in the trunk sequence, it is able to be processed in this itinerary. The route is adapted to serve 

the new request as well. 

After the route has been completed, the vehicle waits at node 9 (the last node of the completed 

itinerary and the first node of the new itinerary) until the predefined start time of the new itinerary. 

Then, the unserved request from the previous itinerary can be processed, as well as any newly 

entered requests that adhere to the trunk sequence. 

Both simulations will result in outputs and used to construct performance metrics, which is 

explained in the methodology. 
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Methodology 

In order to make the comparison between the dynamic and semi-flexible DRT systems, two 

separate simulations were made in Python. These simulations aim to simulate the generation of 

trips requests in a theoretical area with a given number of nodes, where passengers can be picked 

up and dropped off. Through periodically inserting new trip requests, vehicle trip itineraries are 

continuously recalculated, constantly giving updated pickup- and drop-off-times for each trip 

request. When a trip request is fulfilled, i.e., when the vehicle arrives at its drop-off-point, the 

definitive drop-off time is known, resulting in a time discrepancy between the initially given 

pickup and drop-off times and their actually realized pickup and drop-off times. 

In this section, the methodology for obtaining these results will be described in detail. 

The Concept 

Both models will be simulated in a theoretical area of 1 by 1 distance, with a given number of 

nodes (representing the points where the vehicle can pick up and drop off passengers) randomly 

distributed within it. In each simulation, it is simulated how passenger requests over the course of 

a set amount of time are handled by each DRT model. To simulate these requests, each simulation 

starts with a given number of requests (to simulate requests made before the service day starts), 

and afterwards processes a list of randomly created requests, created at random times at a specific 

spawn rate. After a new trip request has entered the system, routes are recalculated, and pickup 

and drop-off times changed. 

In order to account for randomness, multiple areas with a random distribution of nodes are created. 

The location of the nodes is defined as a distance matrix in the Python program, containing the 

distance between each pair of nodes in the system. 

In order to simplify simulations and comparisons, it is assumed that one vehicle serves each area. 

The service time window is 6 hours; in semi-flexible DRT this is approximated as 12 itineraries 

of half an hour each. 

The Simulation 

The simulations simulate two different DRT models through assessing the given input, generating 

random trip requests and returning the completed travel itinerary, together with the exact time 

each trip request was entered, served and completed. Trip requests are defined as a request for a 

trip from a node A to a node B, for a given number of passengers, on a given timestamp for when 

the request was made. These trip requests are made in a theoretical square area of distance 1 by 

1. This area contains a certain number of nodes, which are randomly distributed over the area. 

This area is served by a vehicle which aims to service all trip requests. 

In order for the simulation to be able to be set up, it requires a set of inputs, which are defined 

below. 

Input 
Both simulations require several inputs. First of all, it takes a distance matrix, which defines all 

the distances between each node pair. Since Google OR-tools requires a node to be assigned as 

a ‘depot’, a theoretical node ‘0’ is added to this distance matrix, with a distance of 0 to each 

node. In this way, a route can always start from any node, since any node is distance 0 from the 

theoretical depot. A distance matrix, in this example of only 5 nodes, is represented as follows: 
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[[0, 0, 0, 0, 0, 0], 

[0, 0, 4, 3, 7, 2], 

[0, 4, 0, 5, 4 ,7], 

[0, 3, 5, 0, 1, 3], 

[0, 7, 4, 1, 0, 8], 

[0, 2, 7, 3, 8, 0]] 

 

All node distributions that are used in the simulations can be found in appendix H. 

Besides the distance matrix, each simulation has certain parameters that can be altered: these 

are: 

• The expected number of requests per hour 

• The amount of initial random requests that need to be created before the simulation 

starts 

• The amount of service hours; i.e., the length of the simulation. In semi-flexible DRT 

this is defined as the duration of one headway multiplied by the defined amount of 

itineraries to be simulated. 

• The maximum number of passengers per trip request 

• The chance distribution of the number of people per trip request: if the maximum 

amount of people per request is 5, a [75, 15, 5, 3, 2] gives a 75% chance of a request 

containing 1 passenger, a 15% chance of a request containing 2 passengers, and so 

forth. 

The simulations in this paper use a set number of 10 random trip requests to be defined before 

each simulation. The simulation duration is always 6 hours, or 12 times 30 minutes for semi-

flexible DRT simulations. The maximum number of passengers per trip request is always 5. 

 

Output 
After the simulation has been run, each trip request has the following attributes: 

Pickup node The node where the vehicle picks up the passenger(s). 

Drop-off node The node where the vehicle drops off the passenger(s). 

Number of 

people 

The number of passengers in the request. 

Requested time The time on which the request was made. For modelling purposes, this is 

also the requested pick-up time. 

Indicated pickup 

time 

The initial time given by the simulator for when the passenger(s) would 

be picked up 

Actual pickup 

time 

The actual time the vehicle picked up the passengers in the simulation. 

This can be different from the indicated pickup time, since other requests 

might be process between the entry of this particular request and the time 

the vehicle arrives. 

Indicated drop-

off time 

The initial time given by the simulator for when the passenger(s) would 

be dropped off 

Actual drop-off 

time 

The actual time the vehicle picked up the passengers in the simulation. 

This can be different from the indicated pickup time, since other requests 

might be process between the entry of this particular request and the time 

the vehicle arrives, as well as during the time the passenger(s) are present 

on the vehicle. 

Table 1: Output of processed trip requests in both DRT simulations. 
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In figure 6, it is visualised how each trip request are represented before and after the simulation: 

 

Figure 6: Visualisation of the processing of a request. 

Each trip request consists of the pickup node, the drop-off node, the number of passengers and 

the requested pickup time before the simulation. Once the whole simulation has been run, each 

trip request also contains the information of when the request has been handled. From this 

information, metrics are constructed in a later stage of the thesis to be analysed. 

Besides a list of completed trip requests, a complete route for the DRT vehicle is also generated. 

This consists of a list of each visited node, in chronological order. This list contains three other 

indicators: the total travel time up until that point, the load of the vehicle after unloading and 

picking up passengers at that node, and the total number of served passengers. A simple example 

is the following: 
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Tables 2 and 3: Example of a simple trip request input and route output. 

In this example, 10 requests are made before the start of the service, hence their request time of 

0. In the simulation, the quickest path to serve all these requests is calculated, as well as the load 

of the vehicle. 

Two different simulations: dynamic versus semi-flexible DRT 

In order to compare dynamic DRT with semi-flexible DRT, two different simulations are run 

under identical input parameters. These simulations are similar to each other, but contain 

important differences. 

Simulation of dynamic DRT 
Dynamic DRT is simulated through a continuous simulation: given a set of initial requests, the 

program starts with the processing of these requests and computing a first route based on these 

requests. Afterwards, it iteratively accepts new requests one-for-one, based on their requested 

time. This causes the route to be updated every time a new request has been processed. In the 

meantime, the vehicle keeps visiting nodes, completing requests in the meantime, which are then 

marked as ‘served requests’. After running the simulation for a certain time, an extensive list of 

‘served requests’ exists, each with their own time marks and delays. 

The simulation software works in the following way: 

• Input parameters are chosen 

• The program starts 

• The program generates the first list of initial requests 

• These initial requests are processed to generate the initial route 

• New requests are iteratively inserted according to their requested time, generating a new 

route each time 

• After a set number of hours, defined in the input parameters, the program stops and 

returns the full route and fulfilled requests. 

The conceptual scheme for the simulator can be seen in figure 7. 

Pickup 

node 

Drop-

off 

node 

People Requested 

time 

3 7 1 0 

7 9 1 0 

3 7 1 0 

9 6 1 0 

3 7 1 0 

6 5 1 0 

3 2 1 0 

6 1 3 0 

5 12 2 0 

2 11 2 0 

Node Distance Load Passengers 

9 0 1 1 

6 332 4 5 

2 650 6 7 

5 865 7 9 

3 1264 11 13 

7 1321 9 14 

12 1483 7 14 

1 1669 4 14 

11 1761 2 14 

2 2315 1 14 

9 2555 0 14 
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Figure 7: The conceptual scheme of the dynamic DRT simulation 

Technical summary of the dynamic DRT simulation 
The dynamic DRT simulation has been made in Python, using the Google OR-Tools software 

suite (Google for Developers, n.d.). Google OR-Tools is callable in Python through a wrapper 

function, and is capable of solving TSPs and VRPs. The ‘Vehicle Routing with Pickups and 

Deliveries’ example code (Google for Developers, 2023b) from the Google OR-Tools website 

has been used as a template for the simulation code, since the dynamic DRT simulation also needs 

to process pickup and delivery requests. 

Google OR-Tools in Python can solve VRPs with pickups and deliveries through processing a 

distance matrix of the distances between each pair of nodes, and a list of pickup and drop-off 

requests. Using a predefined search heuristic, the OR-Tools solver attempts to find an as short as 

possible route which serves all nodes. Through defining a constraint that for each pickup and 

drop-off node pair, each pickup node should be visited before the drop-off node, it is ensured that 

each pickup-and-delivery pair is served. 

For the dynamic DRT simulation, the original OR-Tools example code has been changed to be 

able to generate new requests, insert new requests iteratively, to update the route after each newly 

entered request and to keep track of served requests, its pickup and drop-off times, and the load 

of the vehicle at all times. Because OR-Tools does not natively support multiple visits of the same 

node, dummy nodes are created for each node with the same location. Each node location 

therefore contains four ‘pickup’ dummy nodes and four ‘drop-off dummy nodes: in the final 

output, these are represented simply by their common ‘real’ node. 

The used Python code can be found in appendix I, with a pseudocode representation presented 

below. 
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#Input variables: 

 

distanceMatrix = Matrix with distances between all node pairs 

numberOfRequests = Number of initial requests at the start of the 

program. 
requestsPerHour = Expected number of requests to be generated during 

the program, per simulated hour. 
amountOfRunningHours = Number of hours the simulation should run. 
maxPeoplePerRequest = Maximum amount of people per request. The 

analysis uses 5. 
requestWeights = Chance distribution of amount of people per requests. 

The analysis uses [75, 15, 5, 3, 2] means a 75% chance that a random 

request has 1 passenger, 15% of having 2 passengers, etc. 
 

Main Procedure(): 

initialRequests = Create initial random 

requests(numberOfRequests) 
newRequests = Create list of random requests to be inserted 

during the simulation(requestsPerHour * amountOfRunningHours) 
 

Calculate initial route for initialRequests() 
 For each new request in newRequests: 
  Determine new request time 

Determine the route travelled before the new request time, 

add to finalRoute 
Determine which previous requests have been completed 

before the new request time, add to completed requests  
  Insert new request in requests 

Calculate new route, pickup times and dropoff times for 

requests 
  

 Return finalRoute and completed requests  

Pseudocode for the dynamic DRT simulation 

As the search heuristic, Parallel Cheapest Insertion has been chosen to provide a viable initial 

solution. Guided Local Search (GLS) has been chosen as the metaheuristic to escape local cost 

minima. GLS has been proven to provide good solutions for TSPs and VRPs in an acceptable 

amount of time (Beullens et al., 2003; Kilby et al., 1999; Voudouris & Tsang, 1999).  

Simulation of semi-flexible DRT systems 

The semi-flexible DRT system is simulated in a different manner than dynamic DRT systems. 

Since the semi-flexible DRT system is not a continuous system, but rather a system which has 

alternating itineraries in each direction, between two predefined nodes which act as the starting 

or ending node, each itinerary (one bus trip from the starting node to the final node and vice-

versa) is simulated separately. For each itinerary, the simulator determines from the given requests 

which requests can be served and which ones have to be served in a future itinerary. The software 

then produces a full itinerary, from a given starting node to a given end node. 

The semi-flexible DRT simulation makes use of predefined trunk node sequences, which have 

been obtained by running a standard TSP algorithm (Google for Developers, 2023a) over each set 

of nodes  

In the semi-flexible DRT system simulation, at first, a list of initial random requests is generated, 

just like in the dynamic DRT simulation. Based on these initial requests, a first travel itinerary is 

made. After this, random requests are periodically inserted, just like in the first simulation. When 

a request is inserted, it is assessed on two requirements: 
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-Whether the pickup node of the request is located before the drop-off node in the current 

trunk sequence 

-Whether the pickup node is located later in the trunk sequence than the current location 

of the vehicle. 

If the request satisfies both conditions, it is added to the current itinerary. If not, it is kept 

separately for processing in a later itinerary. 

After the first itinerary has ended, the vehicle departs for the next itinerary after a set headway 

time. Before this itinerary starts, the trunk sequence reverses, since the new itinerary is in the 

reverse direction. Before the vehicle departs, the existing requests, which could not be processed 

before, are added if they comply to the trunk sequence (i.e., the pickup node comes before the 

drop-off node in the trunk sequence). Afterwards, the itinerary starts and the same methods are 

repeated as in the first sequence. This simulation is repeated for a set number of itineraries. 

 

Figure 8: the conceptual scheme of the semi-flexible DRT simulation 
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#Input variables: 

 

∎ distanceMatrix = Matrix with distances between all node pairs 

∎ sequence = Trunk sequence of the node area 

∎ numberOfRequests = Number of initial requests at the start of the 

program. 
∎ requestsPerHour = Expected number of requests to be generated during 

the program, per simulated hour. 
∎ expeditionTime = Scheduled time for one travel itinerary in one 

direction 

∎ expeditions = Number of itineraries to be scheduled 

∎ maxPeoplePerRequest = Maximum amount of people per request. The 

analysis uses 5. 
∎ requestWeights = Chance distribution of amount of people per 

requests. The analysis uses [75, 15, 5, 3, 2] means a 75% chance that 

a random request has 1 passenger, 15% of having 2 passengers, etc. 

 

Main Procedure(): 

∎ initialRequests = Create initial random 

requests(numberOfRequests) 
∎ Calculate initial route for initialRequests() 

 
 ∎ For each new expedition in expeditions: 

∎ Retrieve the previous unserved requests from previous 

expeditions 

∎ newRequests = Create list of random requests to be 

inserted during the expedition(expeditionTime) 

 

∎ For each new request in newRequests: 

∎ Calculate new route, pickup times and dropoff times 

for pending and previous unserved requests and the 

new request, from the starting node 

∎ Append the part of the route that comes before the 

insertion of the next new request to the final route 

∎ Determine which requests are serviced, pending and 

unserved 

∎ Store the serviced requests 

∎ Save the starting node for the next iteration 
 

∎ Print the route to Excel 

∎ Reverse the sequence for the next expedition 

 

∎ Return the final route and completed requests and print them in 

Excel 
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Semi-flexible DRT route calculation 
The main part of this code that differs from the dynamic DRT simulation is the different method 

of route calculation. Instead of using a search heuristic, the route is simply calculated using the 

main trunk sequence. For example, node setup 12.1 is a setup with 12 randomly distributed nodes 

in the field. It has a trunk which has been calculated using a simple TSP solver: 

 

Figure 9: Node field 12.1 with its main trunk sequence as the grey line. 

The trunk sequence in this case is [2, 7, 3, 1, 4, 8, 6, 5, 12, 11, 10, 9] for vehicle expeditions which 

start at node 2. Every time a new request is added to be processed, it is assessed if the request can 

be processed (i.e., in the right pickup and drop-off order, as well as starting at a point where the 

vehicle has not passed yet). If this is true, the new request is added to the list of requests to be 

served in the route.  

The route is then simply determined as the order of all pickup and drop-off nodes in the sequence. 

If the list of requests to be served is the following, in the form of [pickup node, drop-off node, 

number of passengers]:  

[4, 12, 1] 

[3, 8, 2] 

[8, 9, 2] 

[1, 6, 1] 

 

Then the pickup and drop-off nodes are nodes 1, 3, 4, 6, 8, 9 and 12. In the trunk sequence order, 

this gives an order of [2, 3, 1, 4, 8, 6, 12, 9]. Note that the starting node (2) and final node (9) are 

always included. This will then be the route the vehicle will travel in this particular expedition, 

which is visualised in figure 10. The occupancy of the vehicle at each point will be [0, 2, 3, 4, 4, 

3, 2, 0]. 
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Figure 10: Node distribution 12.1 with its trunk sequence (grey) and example route (red). 

This route will hold for this itinerary until a new request enters the system, which will then be 

handled according to the process described in the Research Approach. The total simulation will 

run for 12 itineraries of 30 minutes each, to make the runtime 6 hours, just like in the dynamic 

DRT simulation.  
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Case studies 

In order to be able to assess the influence of varying demand scenarios, both simulations are run 

under a set of different scenarios. Firstly, a set of different node distributions is created. These 

node distributions vary from low node densities to high node densities: the node distributions 

have either 12, 16, 20, 24, 28, 32 or 36 nodes in their field. In order to account for the influence 

of the random distribution of the nodes, four random node fields are created for each node density 

scenario. This means that a total of 28 node fields are used in the simulation, four per node density. 

Separate simulations are also run for different demand levels. These vary from low demand (4 

new trip requests per hour) to high demand (24 new trip requests per hour), with increments of 4. 

These demand levels are expected demand levels: each minute, there is a certain chance that a 

new request is generated based on this value. For example, if the expected number of new trip 

requests per hour is 12, then each minute in that hour has a 12/60 = 1/5 chance of having a new 

trip request. 

This gives a grand total of 168 scenarios, which are each simulated four times in the dynamic 

DRT simulation and four times in the semi-flexible DRT simulation. A schematic overview of 

the scenario structure is given in figure 11. 

 

Figure 11: Schematic representation of the different simulation scenarios. This highlights the 

scenario for dynamic DRT, 24 nodes, variant 24.2, with 12 expected new trip requests per hour. 

Each random variant of each node density scenario can be seen in appendix H, along with their 

trunk route for the semi-flexible DRT simulations. 

Analysis of the results 

Both simulations result in lists of both the traversed route in each iteration of the simulation, as 

well as a list of all served requests, like illustrated in tables 1, 2, and 3. The traversed routes 

contain the vehicle load at all times, and the served requests contain their calculated pickup and 

drop-off times 

From the route itineraries, the following metrics are generated: 
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• Vehicle load: the number of people in the vehicle at all times. From this, the vehicle load 

can be visualised over time 

• Distance driven: the total distance driven by the vehicle per itinerary. This is calculated 

as the sum of all straight-line driving times between each sequentially visited node. This 

is similar to the total itinerary time: however, this excludes waiting times when the vehicle 

is idle. 

• Distance ratio: the ratio between the driven distance and the sum of all straight-line 

distances for all trip requests. This sum is the theoretical distance that the vehicle would 

drive if it would serve every request straight from its pickup to its drop-off point. This is 

used to assess how efficient the DRT routing is: the lower the ratio, the less distance 

travelled compared to the theoretical distance sum, and therefore the more efficient the 

DRT routing is. 

These data will be used to generate several key metrics per trip request: 

• Pickup time delay: the difference between the initially indicated pickup time and the 

actually realized pickup time. 

• Drop-off time delay: the difference between the initially indicated drop-off time and the 

actually realized drop-off time. 

• Waiting time: the difference between requested time and the true pickup time. This 

indicates how long one has had to ‘wait’ between requesting the trip and actually being 

picked up by the vehicle 

• Travel time: the actual time spent in the vehicle, defined as the difference between the 

true drop-off time and the true pickup time. 

• Excess travel time: defined as the time spent in vehicle compared the straight-line 

distance between the pickup and drop-off point. Remember that distance is the same as 

time in this simulation, indicating that the detour time is the extra time spent in the vehicle 

compared to a theoretical straight line-trip between both nodes. The metric is represented 

as a percentage: the extra percentage of distance driven. For example, if the straight-line 

time between two nodes is 4 minutes, and the trip time was 10 minutes, the detour ratio 

is 150%, since the realized travel time is 150% higher than the straight-line time. By 

definition, this metric cannot be lower than 0%.  

These metrics are obtained for each different node density and demand level scenario. Based on 

these metrics, it can be assessed how they influence the performance of each DRT model. 
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Results 

Simulations have been run for both the dynamic and semi-flexible DRT models, for every pickup 

and drop-off point amount, random node configuration and demand density. Each scenario has 

been simulated 4 times to account for randomness, which amounts to a grand total of 1344 

simulations, which is 672 simulations per DRT model. 

Note that, to maintain clarity, in this section examples of the results will be given, but not all 

results. All results can be consulted in appendices A through G. 

Route itinerary metrics 

Vehicle load 
Vehicle loads vary between the number of nodes in the system and the trip request level. In this 

section, the vehicle loads over time will be shown for a low node density (12 nodes), medium 

node density (24 nodes) and a high node density (36 nodes), and for a low trip request level (4 

expected trip requests per hour), medium trip request level (12 expected request trips per hour) 

and a high trip request level (24 expected requests trips per hour). The vehicle loads are shown as 

scatter plots, with each point representing a vehicle load of one specific route in one specific 

simulation at a point in time. By combining these graphs into one for each scenario, a trend can 

be observed for vehicle loads over time. 

Low node density 

In the scenario with a low node density (12 nodes), vehicle loads are similar between the two 

DRT models. In the low demand scenario, after an initial peak load after processing the initial 

requests, the vehicle load is fairly constant, with the load seldomly exceeding 5. In the middle 

demand scenario, loads are also constant. However, in the dynamic model, the upper limit is a bit 

higher than in the semi-flexible model, with the semi-flexible model rarely exceeding a vehicle 

load of 10 people, while this is 15 people for dynamic DRT. In the high-demand scenario, the 

semi-flexible model keeps loads constant, roughly lower than 20, while the dynamic model shows 

a curve-like trend, with loads peaking between the 20 and 25 load marks. 

For the low node-density scenario, this implies that vehicle load peaks are higher for medium to 

high trip request levels, requiring more vehicle capacity in these higher demand scenarios. For an 

assumed minibus capacity of 24 (Martínez et al., 2015), this means that in high-demand scenarios, 

minibuses may not provide sufficient capacity when the number of pickup and drop-off nodes is 

limited.  
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Figures 12-17: Vehicle loads over time for 12 nodes, both DRT models. 

Medium node density 

In the medium node-density (24 nodes) scenario, the vehicle load shows a similar progression as 

in the low node-density scenario. However, for the dynamic DRT model, the vehicle load peaks 

are higher in the high-demand case. In the semi-flexible DRT model, this is not the case. This  

Figures 18-23: Vehicle loads over time for 24 nodes, both DRT models. 
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implies that for medium node densities, even moderate demand levels might cause vehicle loads 

to exceed the capacity of a minibus in dynamic DRT systems. In high demand scenarios, vehicle 

load peaks can be very high, while the vehicle loads show a lot of variation over time. This 

indicates that, besides the need for higher-capacity vehicles, people are aggregated over time in 

a less efficient way than in semi-flexible DRT. 

High node density 

In the high node density scenario, vehicle loads stay constant for both DRT models for low and 

medium demands. However, when demand is high, vehicle loads tend to disperse a lot from each 

other in the dynamic DRT model. Around half of the data points represent a vehicle load of more 

than 25 passengers during its itinerary. In comparison, the semi-flexible DRT model still keeps 

loads fairly constant, with peaks loads between 15 and 20 passengers. These graphs indicate that 

peak vehicle loads in dynamic DRT start to grow faster than the growth of travel demand in high 

node density scenarios.  

 

Figures 24-29: Vehicle loads over time for 36 nodes, both DRT models. 

For the vehicle load metric overall, it is shown that dynamic DRT and semi-flexible DRT both 

aggregate passengers in a similar manner for low-to-medium node densities and low-to-medium 

demand levels. However, when demand levels exceed 12 requests per hour, semi-flexible DRT 

clearly aggregates the passengers more efficiently, leading to lower vehicle load peaks. Dynamic 

DRT would need bigger vehicles than minibuses to not exceed vehicle capacity, which is not the 

case for semi-flexible DRT. 
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Total distances driven 
For both DRT models, the calculated distance ratio (the driven distance versus the distances 

between all pickup and drop-off node pairs) decreases, as expected, when the demand level 

increases, due to fewer ‘empty’ trips and higher passenger aggregation This means that both 

models more efficiently serve demand when demand increases. Between both models, the semi-

flexible model seems to perform slightly better for lower demand scenarios than the dynamic 

model, except for the high node density scenario. However, this difference seems too small to be 

significant. 

 

 

Figures 30-33: Distance ratios for various node-density scenarios. 

 

Trip request metrics 

The trip request metrics are the metrics constructed from the pickup and drop-off time values 

obtained from each fulfilled trip request. These metrics are shown as boxplots to show their value 

distribution. 

Pickup time delay 
The difference between the initially indicated pickup time and the true pickup time are shown for 

dynamic DRT in figures 34-39. It can be seen that when demand is low (4 or 8 trip requests per 

hour), the pickup time delay is mostly very small, with most values being on or around 0 minutes. 

However, when looking at the outliers, there are some instances where the pickup time delay is 

much greater, even for low demand, going as far as a 70-minute delay. 

For higher demands, the boxplots widen for all node density scenarios. In the 12-node scenario, 

the distribution of values has a limited increase, while in the 24-node and 36-node scenario, the 

distribution of values widens significantly. In the high-node density, high trip request rate 

scenario, only half of requests have their true pickup time within 10 minutes of the initially 

indicated pickup time. 
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For semi-flexible DRT, pickup time delays are mostly non-existent, and only some outliers show 

a discrepancy of a few minutes between the pickup time values, as can be seen in appendix C. 

This shows that, while dynamic DRT has a similar pickup time reliability as semi-flexible DRT 

in low-demand scenarios, indicated pickup times become very unreliable in medium-to-high 

demand scenarios, making its deployment in these scenario types difficult. 

 

Figures 34, 35 and 36: Pickup time delay distributions (including outliers) for dynamic DRT. 

Figures 37, 38 and 39: Pickup time delay distributions (excluding outliers) for dynamic DRT.  

Drop-off time delay 
For the drop-off time delays, the values show a similar trend as for the pickup time delays, but on 

a larger scale. For dynamic DRT, true drop-off times only generally stay within 10 minutes of the 

initial drop-off time for the 4 requests-per-hour scenario. The distribution of drop-off time delays 

widens with every increase in trip requests per hour. For low node density scenarios, the drop-off 

time delays tend to plateau under 50 minutes. However, for higher node density scenarios, the 

drop-off time delays tend to increase even further. Even in a low-node density (12 nodes) and low 

demand (8 trip requests per hour), only half of requests have their drop-off time stay within 10 

minutes of the expected drop-off time. For higher node densities and demand rates, these values 

go far beyond, with outliers as far as 300 minutes. 
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For semi-flexible DRT, drop-off time delays generally stay within 1 minute, even for high-

demand scenarios, as can be seen in Appendix D. Outliers mostly stay under 10-minute 

differences. For dynamic DRT, drop-off time delays stay limited only for very low demand 

scenarios (4 expected requests per hour). This means that dynamic DRT is, regarding delays, only 

viable in very low demand scenarios. In higher demand scenarios, dynamic DRT systems would 

have unacceptable delays compared to semi-flexible DRT systems. 

 

Figures 40, 41 and 42: Drop-off time delay distributions (including outliers) for dynamic DRT. 

 

Figures 43, 44 and 45: Drop-off time delay distributions (including outliers) for dynamic DRT. 

Waiting time 
In dynamic DRT, waiting times tend to grow faster the higher the node density is in the system. 

This can be seen in figures 46, 47 and 48, where waiting times tend to stay limited for low-demand 

scenarios, even with a high node density. However, when trip demand rates increase, waiting 

times increase as well. 
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Figures 46, 47 and 48: Waiting time distributions (excluding outliers) for dynamic DRT. 

For semi-flexible DRT (figures 49, 50 and 51), waiting times stay constant, independent of trip 

demand rate and node density. They tend to be higher than all scenarios for dynamic DRT, 

however, only being roughly equal to the high node density, high trip demand scenario in dynamic 

DRT. In all semi-flexible DRT scenarios, however, there are no outliers, in contrast to dynamic 

DRT, as can be seen in appendix E. 

 

Figures 49, 50 and 51: Waiting time distributions for semi-flexible DRT. 

Overall, waiting times are higher for semi-flexible DRT, making this system less suitable for 

cases where it is desirable that trip requests are fulfilled as soon as possible. However, waiting 

times are independent of node density and demand levels in semi-flexible DRT. Dynamic DRT 

is more suitable when trip requests need to be fulfilled as soon as possible. Low-demand scenarios 

are especially suitable for this, since waiting times are shortest in these scenarios. 

Trip duration 
The time spent in the vehicle, i.e., the actual journey time for each trip request, is heavily 

dependent on the node density in mid- to high trip request rate scenarios for dynamic DRT. In 

low demand scenarios, half of trips are under 16 minutes, even in high node-density scenarios. 

For mid-to-high demand scenarios, the trip lengths plateau for the low node-density scenario (12 

nodes), while for 24 nodes and 36 nodes, the trip times increase dramatically, with outliers as high 

as 260 minutes for the high-demand, high node density scenario. 
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Figures 52, 53 and 54: Trip duration distributions (including outliers) for dynamic DRT. NB: 

some outliers extend outside the graphs. 

When comparing this to semi-flexible DRT, a stark difference can be seen. In every demand and 

every density scenario, the trip duration distributions are lower than for dynamic DRT, as can be 

seen in figures 55-57 and 58-60. As can be seen in figures 58-60, the trip durations remain fairly 

constant for each demand scenario in the low-node density scenario, while it tends to increase in 

the high-node density scenario. However, values stay far below that of their dynamic DRT 

counterparts, as is seen in figures 55-57. 

 

 

Figures 55, 56 and 57: Trip duration distributions (including outliers) for semi-flexible DRT. 

 

Figures 58, 59 and 60: Trip duration distributions (including outliers) for semi-flexible DRT, 

zoomed in. 
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These figures show that trip durations are significantly higher in dynamic DRT, especially in 

medium-to-high demand scenarios and for higher node densities. In order to limit trip durations, 

it is not advisable to use dynamic DRT in higher demand scenarios, especially when regarding 

outliers. 

Excess travel time 
The detour ratios for each trip request show a much greater spread in dynamic DRT than in semi-

flexible DRT. In dynamic DRT, trips have a trip detour ratio of a maximum of 500% only for the 

lowest demand scenario (4 trip requests per hour). In higher demand scenarios, this increases, 

especially in mid- to high-node density scenarios. For low node-density scenarios, the detour ratio 

distribution remains limited. However, these ratios still tend to be four to five times as high as the 

ratios in the same scenarios for semi-flexible DRT. In that model, the detour ratios also increase 

when trip demand increases, but consistently stay about four to five times as low as detour ratios 

in dynamic DRT. 

 

Figures 61, 62 and 63: Excess travel time distributions for dynamic DRT (excluding outliers). 

Figures 64, 65 and 66: Excess travel time distributions for semi-flexible DRT (excluding outliers). 

Outliers exist in both systems, but tend to be extremely high in dynamic DRT, as can be seen in 

appendix G. Therefore, dynamic DRT is not only systemically causing long detours for trips, 

but also occasionally causing extremely long detours. Regarding excess travel time, it is 

therefore advisable to only use dynamic DRT in very low demand scenarios, as excess travel 

time is comparable in only this scenario to semi-flexible DRT.   
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Overall Findings 

From the results, it can be deduced how each DRT model performs under certain scenarios. Key 

Performance Indicators (KPIs) have been created from the observed metrics and are listed below. 

Vehicle loads 
Both dynamic DRT and semi-flexible DRT have comparable peak vehicle loads in low and 

medium demand scenarios. However, in high-demand scenarios, vehicle loads increase 

significantly in dynamic DRT, especially when the node density is also high. This indicates that 

semi-flexible DRT services can be operated with minibuses, if the capacity is assumed to be 24 

people (Martínez et al., 2015). In high-demand DRT systems, this capacity is exceeded, regardless 

of the number of nodes in the system, and therefore, a bigger minibus or regular bus would be 

needed. 

Total distances driven 
In both DRT models, the relative distance driven compared to all pickup-drop-off node distances 

decreases when the trip demand increases, due to aggregation of passengers. Between the two 

models, there seems to be no significant difference in this relatively driven distance; perhaps this 

is due to dynamic DRT tending to detour more, while semi-flexible DRT has to perform more 

empty trips due to driving to the mandatory final stop of each itinerary. 

Reliability 
In cases of low demand, both DRT models perform well for pickup time reliability, except for the 

odd outlier in dynamic DRT. However, regarding drop-off times, only with very low demand 

(around 4 trip requests per hour), dynamic DRT can provide a reliable arrival time for most trip 

requests. In terms of reliability, this means that dynamic DRT only performs on a similar level to 

semi-flexible DRT when demand is very low. Semi-flexible DRT models are therefore preferred 

for any case above four expected requests per hour: they maintain a high reliability even in high-

demand scenarios. 

Waiting times 
Regarding waiting times, dynamic DRT performs clearly better in this scenario than semi-flexible 

DRT, with median waiting times being around 10 minutes, compared to around 30 minutes for 

semi-flexible DRT. This is probably due to the set itinerary schedule of semi-flexible DRT, while 

dynamic DRT can instantly respond to a new trip request. This indicates that dynamic DRT is 

more suitable when an instant booking option is preferred; for semi-flexible DRT,  

Travel time 
Individual trips more often experience long detours in dynamic DRT than in semi-flexible DRT, 

for any demand scenario. This might not be as big of a problem for short trips, especially when 

considering the often-shorter waiting time beforehand; however, in bigger areas with longer 

overall distances the additional travel time might become unacceptable. This indicates that 

dynamic DRT should not be deployed in areas that are relatively large; and if so, only for very 

low demand scenarios.  
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Conclusions and Discussion 

In conclusion, the overall picture indicates that dynamic DRT performs similarly to semi-flexible 

DRT in very low demand scenarios (around 4 expected trip requests per hour) in systems with a 

low to medium node density. When taking the benefits of dynamic DRT into account (freedom 

of movement and shorter waiting times), dynamic DRT can be a feasible solution in these kinds 

of scenarios. In scenarios with medium to high demand (8 expected trip requests or higher), 

dynamic DRT becomes impractical, mainly due to reliability problems and excessive travel times. 

It is therefore recommended, when DRT is the preferred system of public transport in an area, to 

implement DRT as a semi-flexible model when demand levels are expected to regularly exceed 

4 requests per hour. As a benchmark, 6 requests per hour could be used as a soft border between 

choosing dynamic DRT and semi-flexible DRT. In any case, it is advisable to avoid dynamic 

DRT for systems with a high number of pickup and drop-off nodes. Dynamic DRT is therefore 

found to be a system better suited to very small-scale systems with low demand, as can be found 

in rural areas. For example, taxi DRT services could be dynamic in very rural areas, as well as 

bus services with very low demand. Semi-flexible DRT can be implemented in areas where 

demand is higher, like clusters of towns, suburban areas or in cases where a public transport 

system is needed as a feeder system for a higher capacity bus or rail system. 

The results presented in this paper give an insight in how the two DRT models perform in different 

demand and vehicle stop density scenarios. As semi-flexible DRT has been shown to perform 

better in higher-demand scenarios, it can be asserted with more certainty that semi-flexible DRT 

provides a good ‘in-between’ alternative between dynamic DRT and fixed bus line public 

transport. As literature shows that DRT is often more cost-effective than fixed-line public 

transport, semi-flexible DRT has the potential to provide adequate, reliable and scalable public 

transport with a lower cost than fixed-line public transport. 

As this is a simulation of theoretical cases, this study can be interpreted as a general insight into 

the performance of dynamic and semi-flexible DRT systems. For specific use cases, these findings 

can be used as a rule of thumb, but further analysis on the specific area is always advisable. As 

each area has different mobility patterns, geography and modal splits, the choice of public 

transport models should always be made regarding the local context. 

In order to gain further insights for different scenarios, future research can analyse semi-flexible 

DRT under different scenarios. For example, multiple vehicles in one system could be simulated, 

as well as how semi-flexible DRT systems behave as a feeder system for fixed-line public 

transport. Also, comparisons between semi-flexible DRT and fixed-line public transport could 

give more insights in the demand and density levels at which semi-flexible DRT systems become 

less feasible than fixed-line DRT systems. Such insights could further the theoretical basis on 

which local authorities and public transport operators make their decisions, and bring more cost-

effective and efficient public transport to everyone. 
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Appendices 

Appendix A: Vehicle loads over time 

Appendix A.1: Vehicle loads over time, node density = 12 nodes, dynamic DRT 

Appendix A.2: Vehicle loads over time, node density = 12 nodes, semi-flexible DRT 
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 Appendix A.3: Vehicle loads over time, node density = 16 nodes, dynamic DRT 

Appendix A.4: Vehicle loads over time, node density = 16 nodes, semi-flexible DRT 
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 Appendix A.5: Vehicle loads over time, node density = 20 nodes, dynamic DRT 

Appendix A.6: Vehicle loads over time, node density = 20 nodes, semi-flexible DRT 
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 Appendix A.7: Vehicle loads over time, node density = 24 nodes, dynamic DRT 

Appendix A.8: Vehicle loads over time, node density = 24 nodes, semi-flexible DRT 
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 Appendix A.9: Vehicle loads over time, node density = 28 nodes, dynamic DRT 

Appendix A.10: Vehicle loads over time, node density = 28 nodes, semi-flexible DRT 
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 Appendix A.11: Vehicle loads over time, node density = 32 nodes, dynamic DRT 

Appendix A.12: Vehicle loads over time, node density = 32 nodes, semi-flexible DRT 
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 Appendix A.13: Vehicle loads over time, node density = 36 nodes, dynamic DRT 

 

Appendix A.14: Vehicle loads over time, node density = 32 nodes, dynamic DRT 
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Appendix B: Distance ratios 

Appendix B.1: Average distance ratios (total distance driven by the vehicle divided by sum of all 

trip request distances) per node density. 
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Appendix C: Pickup time delays 

Appendix C.1: Pickup time delay distributions for each node density and demand level, dynamic 

DRT, without outliers.
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Appendix C.2: Pickup time delay distributions for each node density and demand level, dynamic 

DRT, with outliers. 
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Appendix C.3: Pickup time delay distributions for each node density and demand level, semi-

flexible DRT, with outliers. 
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Appendix D: Drop-off time delays 

Appendix D.1: Drop-off time delay distributions for each node density and demand level, 

dynamic DRT, without outliers. 
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Appendix D.2: Drop-off time delay distributions for each node density and demand level, 

dynamic DRT, with outliers. 
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Appendix D.3: Drop-off time delay distributions for each node density and demand level, semi-

flexible DRT, with outliers. 
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Appendix E: Waiting times 

Appendix E.1: Waiting time distributions for each node density and demand level, dynamic 

DRT, without outliers. 
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Appendix E.2: Waiting time distributions for each node density and demand level, dynamic 

DRT, with outliers. 
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Appendix E.3: Waiting time distributions for each node density and demand level, semi-flexible 

DRT. Does not contain outliers. 
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Appendix F: Trip durations 

Appendix F.1: Trip duration distributions for each node density and demand level, dynamic 

DRT, without outliers. 
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Appendix F.2: Trip duration distributions for each node density and demand level, dynamic 

DRT, with outliers. 
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Appendix F.3: Trip duration distributions for each node density and demand level, semi-flexible 

DRT, with outliers. 
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Appendix G: Excess travel times 

Appendix G.1: Excess travel time distributions for each node density and demand level, 

dynamic DRT, without outliers. 
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Appendix G.2: Excess travel time distributions for each node density and demand level, 

dynamic DRT, with outliers. 
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Appendix G.3: Excess travel time distributions for each node density and demand level, semi-

flexible DRT, without outliers. 
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Appendix G.4: Excess travel time distributions for each node density and demand level, semi-

flexible DRT, with outliers. 
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Appendix H: Node distributions and trunk sequences 

Appendix H.1: node distributions and trunk sequences for node densities 12, 16 and 20 used in 

the simulations. 
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Appendix H.2: node distributions and trunk sequences for node densities 24, 28 and 32 used in 

the simulations. 
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Appendix H.3: node distributions and trunk sequences for node density 36 used in the 

simulations. 
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Appendix I: Code 

Appendix I.1: Code used for dynamic DRT simulations. 

""" 

 

Script for simulating a dynamic Demand Responsive Transport system based on an area with nodes. 

This version successfully creates routes based on an initial random set of requests, after which it 

adds new requests based on processed requests after a certain timeframe (distance). 

This version writes successive iterations into one Excel file with correct load information, for both 

real-time and cumulative loads. 

This version generates random requests over a certain time period, which are periodically inserted 

into the main route. 

 

""" 

 

from ortools.constraint_solver import routing_enums_pb2 

from ortools.constraint_solver import pywrapcp 

from random import random, sample, choices 

from random import * 

from datetime import datetime 

import openpyxl 

import numpy as np 

from numpy import * 

import os 

import csv 

import time 

 

startTime = time.time() 

 

#################### 

##Input variables:## 

#################### 

 

file = open(r"C:\Users\Path\DistanceMatrix.txt", "r") 

distMatrix = file.read() 

distMatrix = eval(distMatrix) 

 

 

nodeDuplicationFactor = 8                       #The maximum times a request can be made from or to 

the same node is half of this value. Value should therefore always be even. Not recommended to go 

above 10. 

 

numberOfRequests = 10                           #The number of initial requests 

 

requestsPerHour = 4                            #The expected amount of requests per hour 

 

amountOfRunningHours = 6                        #The amount of hours the simulation should run 

 

maxPeoplePerRequest = 5                         #The maximum amount of people belonging to one 

request 

 

requestWeights = [75, 15, 5, 3, 2]                #The chance distribution of the amount of people 

for one request. [6, 3, 1, 1, 1] means that 50% of requests have 1 person, 25% have 2 people, etc. 

 

path = r"C:\Users\Path\Output"    #Set the folder to save the results in. 

 

############################# 

##Non-changeable variables:## 

############################# 

 

amountOfNodes = len(distMatrix) #Amount of locations that can be visited: includes the dummy node 0. 

 

workbook = openpyxl.Workbook() #Initiate 

 

depot = 0 

 

####################### 

##Callable functions:## 

####################### 

 

def createRandomRequestList(): 

#Creates the list of random requests to be inserted over the runtime of the simulation 

    newRequests = [] 

    for i in range(1, int(amountOfRunningHours * 60)): 

        createRequest = uniform(0, 60) < requestsPerHour 

        if createRequest: 

            time = i * 100 

            newRequest = sample(range(1,amountOfNodes),2) 

            newRequests.append(newRequest + choices(range(1, maxPeoplePerRequest + 1), weights = 

requestWeights) + [time, 0, 0, 0, 0]) 

             

    return newRequests 

 

def createNodeDummies(distMatrix): 

#Creates the multiplied distance matrix necessary for simultaneous pickup and dropoff 
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    matrix = [] 

    for x in distMatrix: 

        matrix.append(nodeDuplicationFactor * x) 

    matrix = nodeDuplicationFactor * matrix 

    return matrix 

 

def createRequests(originalRequests, amountOfRequests, maxPeoplePerRequest, requestWeights, 

amountOfNodes): 

#Creates a list of random requests. Keeps into account original requests to be saved. Adheres to 

request constraints (does not assign more pickups and dropoffs per node than possible). 

    requests = originalRequests 

    while len(requests) < amountOfRequests: 

        newRequest = sample(range(1,amountOfNodes + 1),2) 

        checkPickUp = 0 

        checkDropOff = 0 

        for j in requests: 

            if j[0] == newRequest[0]: 

                checkPickUp += 1 

            if j[1] == newRequest[1]: 

                checkDropOff += 1 

        if checkPickUp < nodeDuplicationFactor/2 and checkDropOff < nodeDuplicationFactor/2: 

            requestTime = 0 

            requests.append(newRequest + choices(range(1, maxPeoplePerRequest + 1), weights = 

requestWeights) + [requestTime, 0, 0, 0, 0]) 

    return requests 

 

def assessDistancesAndReturnPrevNode(route, timeCutOff): 

#Makes sure that route detours (nodes which need not be visited) are deleted and that distances are 

updated accordingly. Also returns the time cut off point, which signals that a new request has 

entered the system. 

    nodeToReturn = [] 

    distance = route[0][1] 

     

    for i in range(1, len(route)): 

        distance += distMatrix[route[i][0]][route[i-1][0]] 

        route[i][1] = distance 

        if route[i-1][1] <= timeCutOff and route[i][1] > timeCutOff: 

            nodeToReturn = route[i] 

    if timeCutOff < route[0][1]: 

        return route[0] 

    elif timeCutOff >= route[-1][1]: 

        return route[-1] 

    return nodeToReturn 

 

def setNodes(requests, pendingRequests): 

#Sets the distance nodes to the extra values to prevent double visit errors 

    for y in requests: 

            y[1] += amountOfNodes 

    for y in pendingRequests: 

            y[1] += amountOfNodes 

    for i in range(amountOfNodes): 

        foundPickUp = 0 

        foundDelivery = 0 

        for x in requests: 

            if x[0] == i: 

                foundPickUp += 1 

                x[0] += (foundPickUp - 1) * 2 * amountOfNodes 

            if x[1] == i + amountOfNodes: 

                foundDelivery += 1 

                x[1] += (foundDelivery - 1) * 2 * amountOfNodes 

        for x in pendingRequests: 

            if x[0] == i: 

                foundPickUp += 1 

                x[0] += (foundPickUp - 1) * 2 * amountOfNodes 

            if x[1] == i + amountOfNodes: 

                foundDelivery += 1 

                x[1] += (foundDelivery - 1) * 2 * amountOfNodes 

    return [row for row in requests],  [row for row in pendingRequests] 

 

def unSetNodes(requests, pendingRequests): 

#Reverts the dummy values back to real node values for presentation 

    for request in requests: 

        request[0] = request[0] % amountOfNodes 

        request[1] = request[1] % amountOfNodes 

    for request in pendingRequests: 

        request[0] = request[0] % amountOfNodes 

        request[1] = request[1] % amountOfNodes 

    return requests, pendingRequests 

 

def create_data_model(distMatrix, requests, depot): 

    data = {} 

    #The distance matrix contains the distance from all pickup nodes (nodes 0 to n) to all delivery 

nodes (nodes n+1 to 2n) 

    data['distance_matrix'] = createNodeDummies(distMatrix) 

    #Trip requests: each location has one pickup node and one delivery node. Note that these cannot 

be the same: each location has two nodes: i and i+[amount of locations]. 

    #Example: location 8 has nodes 8 and 32 (when 24 nodes exist). 

    data['pickups_deliveries'] = requests 
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    #The depot is a virtual depot for system purposes: node 0 has distance 0 to all nodes. 

    data['depot'] = depot 

    return data 

 

def printExcel(workbook, route, totalFulfilledRequests, amountOfNewRequests): 

#Prints the final data to an Excel file 

    workbook.worksheets[0].title = 'Complete route' 

    workbook.worksheets[0].append(['Node', 'Distance', 'Load', 'Passengers']) 

    servicedRequestsSheet = workbook.create_sheet('Serviced requests', 1) 

    servicedRequestsSheet.append(['PickUp', 'DropOff', 'People', 'Requested Time', 'Initial Pickup 

Time', 'True Pickup Time', 'Indicated dropoff', 'True dropoff']) 

 

    for i in range(len(route)): 

        if i == 0 or route[i-1] != route[i]: 

            workbook.worksheets[0].append(route[i]) 

     

    for request in totalFulfilledRequests: 

        servicedRequestsSheet.append(request) 

 

    servicedRequestsSheet.append(['New requests: ', amountOfNewRequests]) 

 

    os.makedirs(path, exist_ok=True) 

         

    currentTime = str(datetime.now().strftime('%m_%d_%H_%M_%S')) 

    filePath = os.path.join(path, currentTime + ' ' + str(requestsPerHour) + ' RpH' + 'output.xlsx') 

    workbook.save(filePath) 

    print("Saved as ", filePath) 

 

def processSolution(data, manager, requests, pendingRequests, totalLoad, initialDistance, 

previousEndPoint, timeCutOff, routing, solution): 

#Processes the solution given by the program. Calculates the correct loads and writes it, along with 

the distances to the Excel file. 

    masterRoute = [] 

    total_distance = 0 

    newSheet = workbook.create_sheet('route ') 

    writeHeader = ['Node', 'Distance', 'Load', 'Passengers'] 

 

    index = routing.Start(0) 

    if requests[0][3] <= initialDistance: 

        route_distance = initialDistance 

    else: 

        route_distance = requests[0][3] 

    #Initialize variables. 

    previous_route_distance = 0 

    route_load = 0 

    total_load = totalLoad 

    previous_index = 0 

    printString = [] 

    fulfilledRequests = [] 

    pendingToReturn = [] 

    fulfilledToReturn = [] 

    requestsToReturn = [] 

    totalLoadToReturn = totalLoad 

    fulfilledRouteToReturn = [] 

    lastPointToReturn = 0 

    cutoffPoint = True 

    firstNode = True 

 

    #Add pending requests loads to the current load. 

    for request in pendingRequests: 

        route_load += request[2] 

 

    togo = requests.copy() 

    passed = pendingRequests.copy() 

    while not routing.IsEnd(index): 

        node_index = manager.IndexToNode(index) 

        if node_index%amountOfNodes > 0: 

            if firstNode: 

                route_distance += distMatrix[previousEndPoint%amountOfNodes][index%amountOfNodes] 

                initialDistance += distMatrix[previousEndPoint%amountOfNodes][index%amountOfNodes] 

                firstNode = False 

            removeReqs = [] 

            for request in togo: 

                #If the current node is the pickup node of a request, add the new passengers to the 

load variables. 

                if request[0]%amountOfNodes == index%amountOfNodes: 

                    route_load += request[2] 

                    total_load += request[2] 

                    passed.append(request) 

                    removeReqs.append(request) 

            for request in removeReqs: 

                togo.remove(request) 

            removePends = [] 

            for pending in passed: 

                #If the current node is the dropoff node of a pending request, remove the 

disembarking passengers from the current load variable. 

                if pending[1]%amountOfNodes == index%amountOfNodes: 

                    route_load -= pending[2] 
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                    removePends.append(pending) 

            for pend in removePends: 

                passed.remove(pend) 

            printString = [index%amountOfNodes, route_distance, route_load, total_load] 

             

         

        if node_index%amountOfNodes > 0: 

            previous_index = index 

        index = solution.Value(routing.NextVar(index)) 

        while previous_index%amountOfNodes == index%amountOfNodes: 

            index = solution.Value(routing.NextVar(index)) 

             

        if ((previous_index % amountOfNodes) != 0 and (index % amountOfNodes) != 0) and abs(index % 

amountOfNodes) != abs(previous_index % amountOfNodes): 

            masterRoute.append(printString) 

 

        route_distance += routing.GetArcCostForVehicle( 

            previous_index, index, 0) 

         

        previous_route_distance = route_distance 

 

    masterRoute.append(printString) 

 

    total_distance += route_distance 

 

    newSheet.append(writeHeader) 

 

    #Print the provisional route in a new sheet to Excel. 

    routeToPrint = [] 

    for i in range(len(masterRoute)): 

        if i == 0: 

            routeToPrint.append(masterRoute[i]) 

        elif masterRoute[i][2] != masterRoute[i-1][2] or masterRoute[i][3] != masterRoute[i-1][3]: 

            routeToPrint.append(masterRoute[i]) 

 

    pointToReturn = assessDistancesAndReturnPrevNode(routeToPrint, timeCutOff) 

    visitedNodes = [] 

    #Update the pending requests and fulfilled requests, and update their values. 

    for i in range(len(routeToPrint)): 

        removeReqs = [] 

        for request in requests: 

        #If the current node is the pickup node of a request, assign the request to the pending 

requests lists, and update pickup times and loads. 

            if request[0]%amountOfNodes == routeToPrint[i][0]: 

                if request[4] == 0: 

                    request[4] = routeToPrint[i][1] 

                request[5] = routeToPrint[i][1] 

                if i == 0: 

                    pendingRequests.append(request) 

                    removeReqs.append(request) 

                elif routeToPrint[i-1][1] < timeCutOff: 

                    pendingRequests.append(request) 

                    removeReqs.append(request) 

            if request[1]%amountOfNodes == routeToPrint[i][0] and request[0]%amountOfNodes in 

visitedNodes: 

                if request[6] == 0: 

                    request[6] = routeToPrint[i][1] 

                request[7] = routeToPrint[i][1] 

        for request in removeReqs: 

            requests.remove(request) 

        removePends = [] 

        for pending in pendingRequests: 

            #If the current node is the drop-off node of a pending request, assign the request to the 

fulfilled requests lists, and update drop-off times and loads. 

            if pending[1]%amountOfNodes == routeToPrint[i][0]: 

                if pending[6] == 0: 

                    pending[6] = routeToPrint[i][1] 

                pending[7] = routeToPrint[i][1] 

                if i == 0: 

                    fulfilledRequests.append(pending) 

                    removePends.append(pending) 

                elif routeToPrint[i-1][1] < timeCutOff: 

                    fulfilledRequests.append(pending) 

                    removePends.append(pending) 

        for pending in removePends: 

            pendingRequests.remove(pending) 

        visitedNodes.append(routeToPrint[i][0]) 

 

    if timeCutOff < 999999: #To indicate that it is the last node of the route 

        totalLoadToReturn = pointToReturn[3] 

        lastPointToReturn = pointToReturn[0] 

 

    fulfilledRouteToReturn = [] 

    for i in range(len(routeToPrint)): 

        if i == 0: 

            fulfilledRouteToReturn.append(routeToPrint[i]) 

        elif routeToPrint[i-1][1] < timeCutOff: 

            fulfilledRouteToReturn.append(routeToPrint[i]) 
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    pendingToReturn = pendingRequests.copy() 

    fulfilledToReturn = fulfilledRequests.copy() 

    requestsToReturn = requests.copy() 

 

    for node in routeToPrint: 

        newSheet.append(node)   

 

    return masterRoute, requestsToReturn, fulfilledToReturn, pendingToReturn, fulfilledRouteToReturn, 

lastPointToReturn, totalLoadToReturn 

 

def runProgram(requests, pendingRequests, totalLoad, initialDistance, previousEndPoint, timeCutOff, 

depot): 

#Runs the solver 

    startTime = time.time() 

 

    #Write the open requests to a new Excel sheet 

    newSheet = workbook.create_sheet('req ') 

    writeHeader = ['PickUp', 'DropOff', 'People', 'Requested Time'] 

    newSheet.append(writeHeader) 

    for request in requests: 

        newSheet.append([request[0]%amountOfNodes, request[1]%amountOfNodes, request[2], request[3]]) 

 

    # Instantiate the data problem. 

    data = create_data_model(distMatrix, requests, depot) 

 

    # Create the routing index manager. 

    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']), 

                                           1, data['depot']) 

 

    # Create Routing Model. 

    routing = pywrapcp.RoutingModel(manager) 

 

    # Define the cost of each arc between each node pair: this is the distance between them. 

    def distance_callback(from_index, to_index): 

        from_node = manager.IndexToNode(from_index) 

        to_node = manager.IndexToNode(to_index) 

        return data['distance_matrix'][from_node][to_node] 

 

    transit_callback_index = routing.RegisterTransitCallback(distance_callback) 

    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) 

     

    # Add the distance dimension. 

    dimension_name = 'Distance' 

    routing.AddDimension( 

        transit_callback_index, 

        0, 

        100000, #no maximum distance 

        True,   

        dimension_name) 

    distance_dimension = routing.GetDimensionOrDie(dimension_name) 

    distance_dimension.SetGlobalSpanCostCoefficient(100) 

 

    # Set the constraints resulting from the requests 

    for request in data['pickups_deliveries']: 

        pickup_index = manager.NodeToIndex(request[0]) 

        delivery_index = manager.NodeToIndex(request[1]) 

        routing.AddPickupAndDelivery(pickup_index, delivery_index) 

        routing.solver().Add( 

            routing.VehicleVar(pickup_index) == routing.VehicleVar( 

                delivery_index)) 

        #Pickup nodes of each request should always come in the route before the drop-off node in the 

same request. 

        routing.solver().Add( 

            distance_dimension.CumulVar(pickup_index) <= 

            distance_dimension.CumulVar(delivery_index)) 

 

 

    # Set the initial solution heuristic and the metaheuristic for route searching. 

    search_parameters = pywrapcp.DefaultRoutingSearchParameters() 

    search_parameters.first_solution_strategy = ( 

        routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION) 

    search_parameters.local_search_metaheuristic = ( 

        routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH) 

    search_parameters.time_limit.seconds = 2 

 

    # Solve the problem. 

    solution = routing.SolveWithParameters(search_parameters) 

 

    # Print solution on console. 

    if solution: 

        masterRouteLocal, requests, fulfilledRequests, pendingRequests, routeTraveled, 

lastPointToReturn, totalLoad = processSolution(data, manager, requests, pendingRequests, totalLoad, 

initialDistance, previousEndPoint, timeCutOff, routing, solution) 

 

    return masterRouteLocal, requests, fulfilledRequests, pendingRequests, routeTraveled, 

lastPointToReturn, totalLoad 
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def main(): 

#The main call for the porgram. Generates the requests and iterates over them. 

 

    #Initial variables: no requests, no route and no load. 

    requests = [] 

    pendingRequests = [] 

    fulfilledRequests = [] 

    totalFulfilledRequests = [] 

    route = [] 

    totalLoad = 0 

    initialDistance = 0 

    previousEndPoint = 0 

 

    #Create new random pickup requests. 

    initialRequests = createRequests(requests, numberOfRequests, maxPeoplePerRequest, requestWeights, 

amountOfNodes-1) 

    newRequests = createRandomRequestList() 

    newRequestsLength = len(newRequests) 

 

    for i in range(newRequestsLength + 1): 

        if i == 0: 

            requests = initialRequests 

        else: 

            requests.append(newRequests[0]) 

            newRequests.remove(newRequests[0]) 

 

        #Give dummy nodes a distinct number. 

        setNodes(requests, pendingRequests) 

        #Error catch if the first node pickup is the same as the depot 

        if requests[0][0]%amountOfNodes == previousEndPoint: 

            requests[0][0] += amountOfNodes * 2 

 

        if requests[0][1]%amountOfNodes == previousEndPoint: 

            requests[0][1] += amountOfNodes * 2 

 

 

        if i < newRequestsLength: 

            nextTimeCutOff = newRequests[0][3] 

        else: 

            nextTimeCutOff = 9999999999999 

        #Create a new route for the given requests and the pending requests. 

        masterRoute, requests, fulfilledRequests, pendingRequests, routeTraveled, previousEndPoint, 

totalLoad = runProgram(requests, pendingRequests, totalLoad, initialDistance, previousEndPoint, 

nextTimeCutOff, previousEndPoint) 

                                                                                            

        #Give dummy nodes the same number. 

        unSetNodes(requests, pendingRequests) 

 

        #Add the fulfilled requests in this iteration to the total list of fulfilled requests. 

        for request in fulfilledRequests: 

            totalFulfilledRequests.append(request) 

 

        for node in routeTraveled: 

            route.append(node) 

 

        initialDistance = route[-1][1] 

 

        #Print the elapsed time for this iteration. 

        endTime = time.time() 

        elapsedTime = endTime - startTime 

        print("Iteration ", i, ", Time:", elapsedTime, " seconds") 

 

    #Give the fulfilled requests their real node value from their dummy value. 

    unSetNodes(totalFulfilledRequests, []) 

 

    uniqueRequests = [] 

    for request in totalFulfilledRequests: 

        if uniqueRequests.count(request) == 0: 

            uniqueRequests.append(request) 

     

    #Print the total list of fulfilled requests to the Excel file and save. 

    printExcel(workbook, route, uniqueRequests, newRequestsLength) 

 

if __name__ == '__main__': 

    main() 
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Appendix I.2: Code used for semi-flexible DRT simulations. 

""" 

 

Script for simulating a semi-flexible Demand Responsive Transport system based on an area with nodes. 

This version successfully creates routes based on an initial random set of requests, after which it 

adds new requests based on processed requests after a certain timeframe (distance). 

This version writes successive iterations into one Excel file with correct load information, for both 

real-time and cumulative loads. 

This version keeps track of individual request times and true pickup times per request. 

 

""" 

 

from ortools.constraint_solver import routing_enums_pb2 

from ortools.constraint_solver import pywrapcp 

from random import random, sample, choices 

from random import * 

from datetime import datetime 

import openpyxl 

import numpy as np 

from numpy import * 

from pathlib import Path 

import os 

import csv 

import time 

 

#################### 

##Input variables:## 

#################### 

file = open(r"C:\Users\Path\DistanceMatrix.txt", "r") 

distMatrix = file.read() 

distMatrix = eval(distMatrix) 

 

maxRequestsperNode = 4 

 

numberOfRequests = 10 

 

maxPeoplePerRequest = 5 

 

requestWeights = [75, 15, 5, 3, 2] 

 

path = r"C:\Users\Path\OutputInterim" #Set the folder to save the interim results in. 

 

finalPath = r"C:\Users\Path\OutputFinal" #Set the folder to save the final results in. 

 

trunkFile = open(r"C:\Users\Path\Trunk.txt", "r") #The array with the trunk sequence 

 

expeditionTime = 3000   #The time one expedition (itinerary) of the vehicle is alloted 

 

requestsPerHour = 24     #Number of expected random requests per hour 

 

expeditions = 12 #number of expeditions (half one way, half the other) 

 

############################# 

##Non-changeable variables:## 

############################# 

 

amountOfNodes = len(distMatrix) #Amount of locations that can be visited: includes the dummy node 0. 

 

sequence = trunkFile.read()     #Read the trunk sequence from its file. 

sequence = eval(sequence) 

 

def createRandomRequestList(iteration): 

#Creates  a new set of random requests for a specific itinerary. 

    newRequests = [] 

    expectedAmountOfRequests = requestsPerHour * (expeditionTime/6000) 

    for i in range(int(expeditionTime/100)): 

        createRequest = uniform(0, 60) < requestsPerHour 

        if createRequest: 

            time = i * 100 

            newRequest = sample(range(1,amountOfNodes),2) 

            newRequests.append(newRequest + choices(range(1, maxPeoplePerRequest + 1), weights = 

requestWeights) + [time + iteration * expeditionTime, 0, 0, 0, 0]) 

             

    return newRequests 

 

def createRequests(currentSequence, amountOfRequests, maxPeoplePerRequest, requestWeights, 

amountOfNodes): 

#Creates a list of initial random requests, to be called in the first iteration. 

    requests = [] 

    while len(requests) < amountOfRequests: 

        newRequest = sample(range(1,amountOfNodes),2) 

        checkPickUp = 0 

        checkDropOff = 0 

        for j in requests: 

            if j[0] == newRequest[0]: 

                checkPickUp += 1 
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            if j[1] == newRequest[1]: 

                checkDropOff += 1 

        if currentSequence.index(newRequest[0]) != 0 and currentSequence.index(newRequest[1]) != 0: 

            if checkPickUp < maxRequestsperNode and checkDropOff < maxRequestsperNode: 

                requestTime = 0 

                requests.append(newRequest + choices(range(1, maxPeoplePerRequest + 1), weights = 

requestWeights) + [requestTime, 0, 0, 0, 0]) 

    return requests 

 

def printExcel(workbook, route, fulfilledRequests, storedRequests, i): 

#Print the final route and served requests to an Excel file. 

    workbook.worksheets[0].title = 'Complete route' 

    workbook.worksheets[0].append(['Node', 'Distance', 'Load', 'Passengers']) 

    servicedRequestsSheet = workbook.create_sheet('Serviced requests', 1) 

    servicedRequestsSheet.append(['PickUp', 'DropOff', 'People', 'Requested Time', 'Initial Pickup 

Time', 'True Pickup Time', 'Indicated dropoff', 'True dropoff']) 

    unServicedRequestsSheet = workbook.create_sheet('Unserviced requests', 2) 

    unServicedRequestsSheet.append(['PickUp', 'DropOff', 'People', 'Requested Time']) 

 

    for node in route: 

        workbook.worksheets[0].append(node) 

     

    for request in fulfilledRequests: 

        servicedRequestsSheet.append(request) 

 

    for request in storedRequests: 

        unServicedRequestsSheet.append(request)     

 

    os.makedirs(path, exist_ok=True) 

         

    currentTime = str(datetime.now().strftime('%m_%d_%H_%M_%S')) 

    filePath = os.path.join(path, currentTime + ' ' + str(i) + 'output.xlsx') 

    workbook.save(filePath) 

    print("Saved as ", filePath) 

 

def print_solution(solution, workbook, iteration): 

#Print a single (provisional) route to an excel sheet 

    newSheet = workbook.create_sheet('route ' + ', '.join(str(element) for element in iteration)) 

    writeHeader = ['Node', 'Distance', 'Load', 'Passengers'] 

    newSheet.append(writeHeader) 

 

    for node in solution: 

        newSheet.append(node) 

         

def runProgram(currentSequence, requests, initialNode, workbook, iteration): 

#Calculates a new route based on current requests 

    startTime = time.time() 

    activeNodesUnSorted = [] 

    pendingRequests = [] 

    requestsForLater = [] 

    newRequest = [] 

    if len(requests) > 0: 

        newRequest = requests[-1].copy() 

        requests.remove(newRequest) 

 

    for request in requests: 

        #if the request is a new request (i.e. its time of request is higher than the initial time), 

don't process 

        if currentSequence.index(request[0]) < currentSequence.index(request[1]):  

            pendingRequests.append(request) 

        else: 

            requestsForLater.append(request) 

 

    if newRequest != []: 

        #If the request has its pickup node before the drop-off node in the sequence, accept the 

request 

        if currentSequence.index(initialNode[0]) <= currentSequence.index(newRequest[0]) < 

currentSequence.index(newRequest[1]): 

            pendingRequests.append(newRequest) 

        else: 

        #Else, save it for another itinerary. 

            requestsForLater.append(newRequest) 

         

    #Determine which nodes have demand, i.e. which nodes need to be visited. 

    for request in pendingRequests: 

        if currentSequence.index(initialNode[0]) < currentSequence.index(request[0]): 

            if request[0] not in activeNodesUnSorted: 

                activeNodesUnSorted.append(request[0]) 

        if currentSequence.index(initialNode[0]) < currentSequence.index(request[1]):    

            if request[1] not in activeNodesUnSorted:     

                activeNodesUnSorted.append(request[1]) 

    indices = [] 

    for node in activeNodesUnSorted: 

        indices.append(currentSequence.index(node)) 

 

    #Sort the nodes based on the trunk sequence. 

    activeNodesSorted = [x for y, x in sorted(zip(indices, activeNodesUnSorted))] 
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    #Make sure that the route ends at the last node of the trunk sequence. 

    if activeNodesSorted != []: 

        if activeNodesSorted[-1] != currentSequence[-1]: 

            activeNodesSorted.append(currentSequence[-1]) 

 

    #Set the starting time of the itinerary. 

    if iteration[1] == 0: 

        initialNode[1] = iteration[0] * expeditionTime 

    solution = [] 

    solution.append(initialNode) 

    for node in activeNodesSorted: 

        solution.append([node, 0, 0, 0]) 

 

    #Initialize the vehicle load. 

    totalDistance = initialNode[1] 

    load = initialNode[2] 

    totalPassengers = initialNode[3] 

 

    #Set the loads and distances according to the traveled route. 

    for i in range(len(solution)): 

        #Set the initial distance of the itinerary 

        if i > 0: 

            totalDistance += distMatrix[solution[i][0]][solution[i-1][0]] 

        for request in pendingRequests: 

            if request[0] == solution[i][0] and request[3] > totalDistance: 

                totalDistance = newRequest[3] 

        solution[i][1] = totalDistance 

        for request in pendingRequests: 

            if request[0] == solution[i][0]: 

                #For the first element of the solution, the loads and passengers are already added in 

the previous iteration, except for the new request. 

                if i != 0 or iteration[1] == 0 or request == newRequest:  

                    load += request[2] 

                    totalPassengers += request[2] 

                if request[4] == 0: 

                    request[4] = totalDistance 

                request[5] = totalDistance 

            elif request[1] == solution[i][0]: 

                if i != 0 or iteration[1] == 0 or request == newRequest: 

                    load -= request[2] 

                if request[6] == 0: 

                    request[6] = totalDistance 

                request[7] = totalDistance 

            solution[i][2] = load 

            solution[i][3] = totalPassengers 

 

    newSheet = workbook.create_sheet('req ' + ', '.join(str(element) for element in iteration)) 

 

    writeHeader = ['PickUp', 'DropOff', 'People', 'Requested Time', 'Initial Pickup Time', 'True 

Pickup Time', 'Initial Dropoff Time', 'True Dropoff Time'] 

 

    newSheet.append(writeHeader) 

     

    for request in pendingRequests: 

        newSheet.append(request) 

 

    # Print solution to Excel. 

    print_solution(solution, workbook, iteration) 

                                      

    return solution, pendingRequests, requestsForLater, solution[-1] 

 

def main(): 

 

    #Initial variables: no requests, no route and no load. 

    currentSequence = sequence 

    pendingRequests = [] 

    totalFulfilledRequests = [] 

    completeRoute = [] 

    totalRoute = [] 

    storedRequests = [] 

 

    #Calculate the route for each itinerary (expedition) 

    for i in range(expeditions): 

        workbook = openpyxl.Workbook() 

        pendingRequests = [] 

        fulfilledRequests = [] 

        totalRoute = [] 

 

        if i == 0: 

            initialNode = [currentSequence[0], i*expeditionTime, 0, 0] 

 

        if i == 0: 

            #Create new random pickup requests. Maximum amount of passengers per request is 5, with a 

50% chance of it being only 1. 

            pendingRequests = createRequests(currentSequence, numberOfRequests, maxPeoplePerRequest, 

requestWeights, amountOfNodes-1) 

        else: 
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            #If the itinerary is not the first one, use the non-served requests from the previous 

itinerary. 

            pendingRequests = storedRequests.copy() 

 

        storedRequests = [] 

 

        #Create a list of random requests to be inserted during the itinerary. 

        newRequests = createRandomRequestList(i) 

 

        newRequestsLength = len(newRequests) 

 

        #For each new request to be inserted, recalculate the route, distances and loads. 

        for j in range(newRequestsLength + 1): 

 

            iteration = [i, j] 

 

            #Run the calculation for the insertion of the new request 

            route, pendingRequests, requestsForLater, initialNode = runProgram(currentSequence, 

pendingRequests, initialNode, workbook, iteration) 

 

            definitiveRoute = [] 

 

            #Make sure that once requests are fulfilled, they are added to the final list of requests 

            #Make sure that the route actually traveled by the vehicle is added to the final overall 

route. 

            if j < newRequestsLength: 

                requestToInsert = newRequests[0] 

 

                count = 0 

                for node in route: 

                    if node[1] <= requestToInsert[3]: 

                        definitiveRoute.append(node) 

                        count += 1 

                if count < len(route): 

                    definitiveRoute.append(route[count]) 

                     

                toRemove = [] 

                for request in pendingRequests: 

                    if request[7] <= definitiveRoute[-1][1]: 

                        fulfilledRequests.append(request) 

                        totalFulfilledRequests.append(request) 

                        toRemove.append(request) 

                for request in toRemove: 

                    pendingRequests.remove(request) 

 

                for node in definitiveRoute: 

                    if totalRoute.count(node) == 0: 

                        totalRoute.append(node) 

                        completeRoute.append(node) 

 

                pendingRequests.append(requestToInsert) 

                newRequests.remove(requestToInsert) 

 

            else: 

                for node in route: 

                    if totalRoute.count(node) == 0: 

                        totalRoute.append(node) 

                        completeRoute.append(node) 

                toRemove = [] 

                for request in pendingRequests: 

                    if request[7] <= totalRoute[-1][1]: 

                        fulfilledRequests.append(request) 

                        totalFulfilledRequests.append(request) 

                        toRemove.append(request) 

                for request in toRemove: 

                    pendingRequests.remove(request) 

 

            initialNode = totalRoute[-1] 

                 

            for request in requestsForLater: 

                    storedRequests.append(request) 

                     

        initialNode = totalRoute[-1] 

        if initialNode[0] != currentSequence[-1]: 

            initialNode[0] = currentSequence[-1] 

         

        currentSequence.reverse() 

 

        #Print the total list of fulfilled requests to the Excel file and save. 

        printExcel(workbook, totalRoute, fulfilledRequests, storedRequests, i) 

 

    uniqueNodes = [] 

    for node in completeRoute: 

        if uniqueNodes.count(node) == 0: 

            uniqueNodes.append(node) 

     

    #Print the final route to an Excel file 

    file = Path(finalPath, str(requestsPerHour) + ' RpH.xlsx') 
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    if file.is_file(): 

        workbook = openpyxl.load_workbook(file) 

    else: 

        workbook = openpyxl.Workbook() 

        workbook.worksheets[0].title = 'Complete route' 

        workbook.worksheets[0].append(['Node', 'Distance', 'Time', 'Load', 'Passengers']) 

        servicedRequestsSheet = workbook.create_sheet('Serviced requests', 1) 

        servicedRequestsSheet.append(['PickUp', 'DropOff', 'People', 'Requested Time', 'Initial 

Pickup Time', 'True Pickup Time', 'Indicated dropoff', 'True dropoff']) 

 

    #The below code makes sure that a calculated route is added to an existing Excel file and printed 

from the first empty column. 

    insertColumn = 1; 

    for column in range(1, 100): 

        if workbook.worksheets[0].cell(2, column).value == None: 

            insertColumn = column 

            break 

    print(insertColumn) 

    i = 2 

    for node in uniqueNodes: 

        cell1 = workbook.worksheets[0].cell(row = i, column = column) 

        cell1.value = node[0] 

        cell2 = workbook.worksheets[0].cell(row = i, column = column + 1) 

        cell2.value = node[1] 

        cell3 = workbook.worksheets[0].cell(row = i, column = column + 2) 

        cell3.value = node[1]/100 

        cell4 = workbook.worksheets[0].cell(row = i, column = column + 3) 

        cell4.value = node[2] 

        cell4 = workbook.worksheets[0].cell(row = i, column = column + 4) 

        cell4.value = node[3] 

        i += 1 

     

    for request in totalFulfilledRequests: 

        workbook.worksheets[1].append(request) 

    

    #Save the Excel file. 

    os.makedirs(path, exist_ok=True) 

         

    currentTime = str(datetime.now().strftime('%m_%d_%H_%M_%S')) 

    filePath = os.path.join(finalPath, str(requestsPerHour) + ' RpH.xlsx') 

    workbook.save(filePath) 

    print("Saved as ", filePath) 

     

 

if __name__ == '__main__': 

    main() 

 


