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Learning Mathematics in a 
Classroom Community of Inquiry 

Merrilyn Goos 
The University of Queensland, Australia 

This article considers the question of what specific actions a teacher might take to 
create a culture of inquiry in a secondary school mathematics classroom. Sociocultural 
theories of learning provide the framework for examining teaching and learning prac- 
tices in a single classroom over a two-year period. The notion of the zone of prox- 
imal development (ZPD) is invoked as a fundamental framework for explaining 
learning as increasing participation in a community of practice characterized by math- 
ematical inquiry. The analysis draws on classroom observation and interviews with 
students and the teacher to show how the teacher established norms and practices that 
emphasized mathematical sense-making and justification of ideas and arguments and 
to illustrate the learning practices that students developed in response to these expec- 
tations. 

Key words: Classroom interaction: Learning theories; Reform in mathematics educa- 
tion; Secondary mathematics; Teaching (role, style, methods); Vygotsky 

In recent years, educational policymakers and researchers have called for signif- 
icant changes to the way that mathematics is taught in schools. In the United States, 
for example, the series of influential curriculum documents produced by the 
National Council of Teachers of Mathematics (NCTM) has placed increased 

emphasis on the processes of problem solving, reasoning, and communication 
(NCTM, 1989, 2000). A similar shift in priorities has occurred in Australia, 
where the intent of the NCTM's Principles and Standards document is echoed in 
the National Statement on Mathematics for Australian Schools (Australian 
Education Council, 1991). Like the NCTM agenda, the reformist goals for school 
mathematics in Australia are concerned with developing students' communica- 
tion skills and problem-solving capacities and allowing students to experience the 
actual processes through which mathematics develops (e.g., conjecture, general- 
ization, proof, refutation). 

This article is based in part on my doctoral dissertation completed at The 
University of Queensland under the supervision of Peter Galbraith and Peter 
Renshaw. The research reported here was supported by a Large Grant from the 
Australian Research Council. I am grateful to Vince Geiger and his students for 
welcoming me into their classroom for the duration of this study. I would also like 
to thank Edward Silver and the anonymous reviewers who gave helpful and 
encouraging feedback on earlier versions of the manuscript. 
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Forman (2003) argues that sociocultural perspectives on learning can provide a 
theoretical rationale for these moves for mathematics education reform. 
Sociocultural approaches are distinguished from other theoretical frameworks by 
their association with the Vygotskian school of thought, which claims that human 

thinking is inherently social in its origins (Sfard, Forman, & Kieran, 2001). 
According to Forman, sociocultural theory offers a way forward in understanding 
the fundamental link between instructional practices and learning outcomes, and 
also in showing how mathematics learning entails communication in social contexts. 
From this perspective, mathematics teaching and learning are viewed as social and 
communicative activities that require the formation of a classroom community of 
practice (Lave & Wenger, 1991) where students progressively appropriate and enact 
the epistemological values and communicative conventions of the wider mathe- 
matical community. 

In a sense, all classrooms are communities of practice-but classroom commu- 
nities differ in the kinds of learning practices that become codified and accepted as 
appropriate by teachers and students (Boaler, 1999). For example, in mathematics 
classrooms using a traditional, textbook-dominated approach, effective participation 
involves students in listening to and watching the teacher demonstrate mathematical 
procedures, and then practicing what was demonstrated by completing textbook exer- 
cises. Teaching methods that foster learning mathematics by memorization and 
reproduction of procedures can be contrasted with the more open approaches in 
reform-oriented mathematics classrooms, where quite different learning practices such 
as discussion and collaboration are valued in building a climate of intellectual chal- 
lenge. Rather than rely on the teacher as an unquestioned authority, students in these 
classrooms are expected to propose and defend mathematical ideas and conjectures 
and to respond thoughtfully to the mathematical arguments of their peers. Thus, the 
practices and beliefs developed within reform classrooms frame learning as partic- 
ipation in a community of practice characterized by inquiry mathematics-where 
students learn to speak and act mathematically by participating in mathematical 
discussion and solving new or unfamiliar problems (Richards, 1991). Such classrooms 
could be described as communities of mathematical inquiry. 

This article draws on the findings of a larger study, carried out in an Australian 
secondary school, that aimed to examine the teacher's role in creating a classroom 
culture of inquiry that promoted mathematical habits of mind and to investigate 
patterns of discourse that mediated mathematical reasoning when students worked 
collaboratively on challenging problems. Clearly, these aims resonate with the two 
sociocultural themes-regarding links between teaching practices and learning 
outcomes and the nature of mathematical communication-identified by Forman 
(2003) as being consistent with frameworks for mathematics education reform. 
Elsewhere I have reported on findings related to the second aim of this larger study, 
examining discourse and reasoning within small groups of students (Goos, 2002; 
Goos, Galbraith, & Renshaw, 2002). The focus of this article, then, is concerned 
with the larger study's first aim and addresses the question of how the teacher initi- 
ated students into mathematical practice. 
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The next section introduces key concepts from Vygotsky's original writings and 
outlines how deeper interpretations of these concepts have led to contemporary 
developments in sociocultural theory, particularly in mathematics education. The 
theoretical framework for the study reported in this article is then located within 
this broader landscape. This is followed by details of the research design and 
methods of data collection and analysis relevant to the findings reported here. First, 
I present an account of teaching and learning practices and participants' beliefs in 
a mature community of inquiry-a Grade 12 classroom that was observed over a 
full school year. Second, I analyze changing participation patterns in a Grade 11 
class taught by the same teacher in the following year, to show how this teacher 

began to engage his students in mathematical inquiry. 

OVERVIEW OF SOCIOCULTURAL THEORIES OF LEARNING 

It is generally accepted that sociocultural theories trace their origins to the work 
of the Russian psychologist Vygotsky in the early 20th century (e.g., Forman, 2003; 
Sfard et al., 2001). Wertsch (1985), one of the first scholars to interpret this work 
to Western researchers, identified three general themes at the heart of Vygotsky's 
theoretical approach. The first of these is a reliance on a genetic or developmental 
method: in other words, to understand mental phenomena, we need to concentrate 
on the process of growth and change rather than the product of development. The 
second theme is concerned with the social origins of higher mental functions: volun- 

tary attention, memory, concepts, and reasoning appear first between people on the 
social plane and then within an individual on the psychological plane. The third 
theme claims that mental processes are mediated by tools and signs such as 

language, writing, systems for counting, algebraic symbol systems, diagrams, and 
so on. In connection with these three themes, Vygotsky analyzed the related 

concepts of internalization and the zone of proximal development (ZPD). He 
viewed internalization as a process whereby social phenomena, performed initially 
on an external plane, are transformed into psychological phenomena, executed on 
an internal, mental plane. It is within the zone of proximal development that such 
a transformation can occur, since a child's interaction with an adult or more 

capable peer may awaken mental functions that have not yet matured and thus lie 
in the region between actual and potential developmental levels, between unassisted 
and assisted performance. 

In the West, early attempts to apply Vygotsky's theory in educational research 
in the 1970s and 1980s led to studies of how children learned through collabora- 
tive interaction with adults. Here, the metaphor of scaffolding was introduced by 
Wood, Bruner, and Ross (1976) to elaborate on the role of tutoring in enabling 
novices to solve problems beyond their unassisted efforts. Although the work of 
Wood and colleagues did not explicitly refer to Vygotsky's notion of the zone of 
proximal development, it soon became common to use the term scaffolding to 
describe the interaction between adult and child within the ZPD (e.g., Bruner, 1986; 
Rogoff & Wertsch, 1984). However, this first generation of Vygotskian-inspired 
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educational research suffered from several limitations, arising from the narrow ways 
in which Vygotsky's ideas were initially interpreted rather than from any weak- 
nesses in the ideas themselves. For example, Stone (1993) argued that the scaf- 

folding metaphor, as it was applied in the research of that time, relied on literal 
notions of internalization of the interchange between child and adult, rather than 
more subtle semiotic mechanisms that might account for the transformation and 

appropriation of meanings during these interchanges. He also drew attention to the 

interpersonal dimensions of scaffolding, pointing out that interactions-whether 
between adult and child or within peer groups-are influenced by the motives, 
goals, and status of the participants (see Forman & Cazden, 1985; Rogoff, 1990). 
Consequently, through the 1980s and 1990s, more sophisticated interpretations 
began to emerge in a second generation of research that extended and enriched the 

emerging sociocultural framework, seen, for example, in the collection of theoretical 
and empirical work edited by Forman, Minick, and Stone (1993). The studies in 
this volume contributed to a new conception of sociocultural theory, which recog- 
nized the need to give attention to the institutional context of social interactions, 
the importance of interpersonal relationships in teaching and learning interactions, 
and the idea that modes of thinking are closely linked to forms of social practice. 

In addition to these developments, contemporary sociocultural theory acknowl- 

edges that learning involves increasing participation in a community of practice 
composed of experts and novices (Lave & Wenger, 1991). The concept of a 

community of practice was neither originally focused on school classrooms nor on 

pedagogy. Also, Lave and Wenger developed their work on situated learning, in 

part, through criticizing the notion of learning as internalization, which they 
claimed could be too easily construed as a process of transmission or assimilation. 
However, their concern for "the whole person acting in the world" (p. 49), and their 
emphasis on sociocultural transformation, resonates with elements of the emergent 
framework referred to above. 

Recent research on mathematics learning has employed sociocultural approaches 
in a variety of ways, and likewise there are many ways in which one could reason- 

ably classify and organize these studies within the theoretical perspective sketched 
above. It is beyond the scope of this article to provide a complete review; however, 
the themes identified by Forman (2003) and mentioned at the start of this article 
will serve to map some features of this territory. Thus, there is a body of research 
that identifies with a discursive perspective, focusing on the dynamics of mathe- 
matical communication in teacher-orchestrated discussion within whole-class 

settings (e.g., O'Connor, 2001) or interactive student discussion within small-group 
problem solving (e.g., Kieran, 2001). Interest here centers on the role of semiotic 
mediation in mathematics learning. Researchers have also given their attention to 

relationships between instructional practices and learning outcomes (e.g., Boaler, 
1999, 2000; Lampert, 1990b), often invoking the concept of learning mathematics 
in a community of practice. Whether the emphasis is on discourse or practices, in 
this research there is a clear shift away from viewing mathematics learning as acqui- 
sition toward understanding mathematics learning as participation in the discur- 
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sive and cultural practices of a community. (The acquisition and participation 
metaphors are further elaborated in Sfard, 1998.) 

The shift from acquisition to participation is neatly captured by van Oers (2001) 
in his discussion of educational forms of initiating children into the culture of math- 
ematical practice. How might children be assisted so as to improve their abilities 
for participation? Van Oers proposes that this process begins with the teacher's 
demonstration of a mathematical attitude, that is, a willingness to deal with math- 
ematical concepts and to engage in mathematical reasoning according to the 
accepted values in the community, and consequently, from the teacher's mathe- 
matical expectations about the learners' activity. He suggests that learners appro- 
priate this mathematical attitude through participation in shared practice structured 
by the teacher's actions and expectations. Lerman (2001a; 2001b) frames this 
increasing participation in mathematical speaking and thinking as pulling learners 
forward into their zones of proximal development. He notes that his use of the ZPD 
is less "internalist" than many interpretations of Vygotsky' s original formulation. 
For Lerman, the ZPD is not a physical space, but a symbolic space created through 
the interaction of learners with more knowledgeable others and the culture that 
precedes them. It is in this sense that I use the zone of proximal development as a 
key theoretical construct in the research study presented in this article. The 
following section (drawing on Minick, 1987; van der Veer & Valsiner, 1994; 
Vygotsky, 1978) outlines how the ZPD provided a framework for the analysis of 
learning within a classroom where participants were pulled forward into mathe- 
matical inquiry. 

THE ZONE OF PROXIMAL DEVELOPMENT AS A FRAMEWORK 
FOR ANALYZING LEARNING 

Teacher-Student Interaction: The ZPD as Scaffolding 

The first element of the framework builds on Vygotsky's original definition of 
the ZPD as the distance between a child's problem-solving capability when working 
alone and with the assistance of a more advanced partner, such as a teacher or peer 
tutor. As I described in the previous section, the term scaffolding became associ- 
ated with interactions where the teacher structured tasks to allow students to partic- 
ipate in joint activities that would otherwise be beyond their reach-for example, 
by using predictable dialogue structures or negotiating a division of labor between 
teacher and learner. Central to this notion was the gradual withdrawal of teacher 
support as the learner came to understand the task and to perform more indepen- 
dently. Early research inspired by this scaffolding version of the ZPD tended to have 
a transmissive flavor that implied teaching and learning are simply processes of 
demonstration and imitation, resulting in the orderly transfer of information and 
skills from teacher to learner in some kind of predetermined sequence. However, 
critics of these transmissive interpretations point out that creating a ZPD always 
involves mutual appropriation by teacher and learner of each other's actions and 
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goals (Griffin & Cole, 1984; Newman, Griffin, & Cole, 1989; Renshaw, 1998), and 
that this requires learners to identify with the teacher and the values of the knowl- 

edge community he or she represents (Litowitz, 1993). Thus, the active contribu- 
tion of the learner is essential in negotiating the co-construction of the ZPD, and 

sequencing is seen in the resulting reorganization of social interactions rather than 
the preplanned segmentation and presentation of tasks. Concepts of identification 
and resistance are crucial to understanding what motivates learners to participate 
in these interactions. 

Student-Student Interaction: The ZPD as Collaboration 

Vygotsky also analyzed the notion of the ZPD in terms of more equal status part- 
nerships, noting that when children played together they were able to regulate their 
own and their partners' behavior according to more general social scripts and take 
the perspective of others. From an educational perspective, there is learning poten- 
tial in peer groups where students have incomplete but relatively equal expertise, 
each partner possessing some knowledge and skill but requiring the others' contri- 
bution in order to make progress. In mathematics education, this approach has 
informed research on small-group problem solving to explain how interaction 
between students of comparable expertise can create a collaborative ZPD (e.g., 
Forman & McPhail, 1993; see also Goos, Galbraith, & Renshaw, 2002, for an 

analysis involving students who took part in the study reported here). 
Working in collaborative peer groups, students have an opportunity to own the 

ideas they are constructing and to experience themselves and their partners as active 

participants in creating personal mathematical insights. Nevertheless, it is impor- 
tant to recognize that not all student constructions are equally valid, although 
incomplete or unacceptable constructions can form the basis of classroom activi- 
ties and discussion of different interpretations. Here, the teacher as a more expe- 
rienced knower in the discipline plays a crucial role in selecting student ideas that 
are fruitful to pursue. 

Everyday and Scientific Concepts: The ZPD as Interweaving 

A third aspect of the ZPD is derived from Vygotsky's theorizing in relation to 
schools and the access that formal schooling provides to more organized and 
abstract forms of knowledge. He distinguished between two types of concepts: (1) 
everyday or spontaneous concepts arising from the experiences available in the 
child's immediate community and (2) scientific or theoretical concepts that have 
been elaborated and refined over time to form coherent systems of understanding. 
Thus, the ZPD is conceptualized here in terms of the distance between learners' 
intuitive notions and the formalized concepts, or cultural tools, of a particular acad- 
emic community. Mature knowledge is achieved with the merging of everyday and 
scientific concepts-not by replacing the former with the latter as in a transmis- 
sion model of teaching, but by interweaving the two conceptual forms. Again, as 
the representative of mathematical culture in the classroom, it is the teacher who 
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has the capacity to see in the students' ideas the links to the language and concepts 
of the wider community of mathematicians. 

The features of the ZPD discussed above highlight the pivotal position of the 
teacher in structuring learning activities and social interactions to facilitate students' 
increasing participation in a culture of mathematical inquiry. Within mathematics 
education, accounts of reform-related research have attempted to identify condi- 
tions supporting the creation of learning cultures that challenge students to engage 
regularly in authentic mathematical activities (e.g., Boaler, 1998; Brown, Stein, & 
Forman, 1995; Forman, 1996; Lampert, 1990a; Renshaw & Brown, 1997; Stein, 
Grover, & Henningsen, 1996). Recently, however, there have been calls for more 
attention to be given to the detailed practices of teaching and learning through which 
reform approaches-often described in research reports only in general terms- 
are enacted in classroom communities (Boaler, 2002; McClain & Cobb, 2001). The 
purpose of this article is to provide such a level of detail by analyzing some of the 
teaching and learning practices used by one teacher in helping students appropriate 
the ways of knowing, speaking, and acting characteristic of a community of math- 
ematical inquiry. 

RESEARCH DESIGN AND METHODS 

Participants and Setting 

Highfields School' is an independent secondary school located in a large city in 
the Australian State of Queensland. The school, which opened in 1987, aims to 
provide its students with a balance between academic development, personal 
growth, and physical challenge (e.g., all students participate in an outdoor educa- 
tion program). Teachers, students, and parents contribute to the running of the 
school through a range of democratic structures such as the School Council. 
Highfields is a medium-sized school by Australian standards, with around 600 
students in Grades 8 to 12, and approximately equal numbers of boys and girls. 
Enrolment is restricted to 600 in order to promote students' sense of belonging and 
reinforce the school's espoused commitment to an ethic of care in student-teacher 
relationships. The student population is fairly homogenous with respect to cultural 
and socioeconomic background, with most students coming from white, Anglo- 
Australian middle class families. Like all independent schools in Australia, 
Highfields charges tuition fee for students to attend. These fees are considered to 
be moderate by comparison with other larger, longer established independent 
schools in the same city. 

The Head of the school's mathematics department was invited to participate in 
this study because of his interest in developing his students' mathematical thinking 
and problem solving abilities through an inquiry mathematics approach. (He had 

1 The school name and all student names are pseudonyms. 
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recently completed a small research project on this topic as part of the requirements 
for a master's degree in education.) This teacher was recognized locally as a leader 
in the mathematics teaching profession in Queensland and known nationally 
through his involvement with curriculum development groups and professional 
associations. At the time of the study he had been teaching for about 12 years, most 
of which had been spent at Highfields School. 

In this study I focused on the senior secondary school (Grades 11 and 12) 
because of recent changes to the Queensland senior mathematics syllabuses. Three 
new subjects-Mathematics A, B, and C-had just been accredited by the 
Queensland Board of Senior Secondary School Studies for inclusion on students' 
Senior Certificate, the record of their academic achievement in Grades 11 and 12. 
Mathematics A concentrates on applications for daily living offered by such topics 
as financial mathematics and applied geometry and is described in the syllabus as 
the mathematics required for intelligent citizenship. Mathematics B is a prerequi- 
site for entry to university science and business courses and provides an introduc- 
tion to calculus and statistics. Mathematics C is a more advanced subject that can 
only be taken in conjunction with Mathematics B and prepares students for further 
study of mathematics at the university level. For each of these syllabuses, the three 
general objectives of Mathematical Techniques, Mathematical Applications, and 
Communication reflect recent moves to encourage a more open, problem-solving 
approach to school mathematics in Australia. Thus, students are assessed on their 
ability not only to recall and use learned procedures (Techniques), but also to solve 
unfamiliar, life-related problems (Applications) and justify their methods of solu- 
tion (Communication). 

Teachers of senior secondary mathematics are sometimes reluctant to participate 
in any long-term research project that threatens to disrupt regular classroom 
arrangements. This reluctance is related to time constraints imposed by the need 
to cover prescribed content and pressures associated with high-stakes assessment 
in the final years of school. The teacher who took part in the present study took 
these factors into account when he offered his Mathematics C classroom as a 
research site. As the only teacher in the school responsible for this subject (one class 
in Grade 11 and one in Grade 12), he enjoyed a degree of autonomy that allowed 
him to implement and further develop his preferred, inquiry-oriented teaching 
approaches. This instructional approach appeared to be compatible with the broad 
theoretical interests that shaped my role as a participant-observer. In addition to 
the formal data collection methods detailed in the next section, I had many informal 
conversations with the teacher where we compared our respective interpretations 
of lesson events. This sometimes led to the teacher modifying his plans for the 
following lesson; for example, by finding ways of making a task more challenging 
so as to steer students toward deeper exploration of mathematical concepts. Thus, 
a research partnership evolved in which key theoretical ideas were elaborated in 
the context of classroom practice, and possibilities for changing classroom prac- 
tices were created by emerging theoretical insights. 
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Data Collection 

As the emphasis was on interpreting learning in complex social settings rather 
than experimental manipulation and control of variables, the multiple research 
methods used in the study were consistent with a naturalistic inquiry approach 
(Lincoln & Guba, 1985). These methods are described next. 

Classroom observation. Weekly lesson observations, supplemented by video and 
audiotaped recording of teacher-student and student-student interactions, took 
place throughout the 2 years of the study (a Grade 12 class in the first year and a 
Grade 11 class in the second). The video camera was positioned on a tripod near 
the front, and to one side, of the classroom to allow panning to film the teacher or 
students seated at their desks or tables. Students' conversations during small- 
group work were captured by an external microphone and/or audiotape recorder 
placed on their desks. Field notes were also made of each lesson observed to record 
teacher actions, student actions, board work, and the nature of any materials used 
by the students such as textbooks, handouts, calculators, or computers. These 
records were later annotated with additional observations made while viewing the 
lesson videotapes. 

Interviews with teacher and students. Stimulated recall interviews (Leder, 
1990) were conducted with the teacher and groups of students on several occa- 
sions to seek their interpretations of videotape excerpts. Videotapes for teacher 
interviews were selected and previewed in order to identify a few key moments 
that warranted elaboration by the teacher, with the specific focus being on how 
students developed understanding of the mathematics. The videotape of the whole 
lesson was played without interruption, with the teacher invited to use the pause 
button whenever he wanted to comment on any incident. If a key moment passed 
without comment, I paused the tape and requested comment through questions such 
as "What was happening here?" These interviews lasted around 60 minutes. All 
were recorded on audiotape, with portions being transcribed and inserted into the 
field notes of the lesson. Stimulated recall interviews were carried out with groups 
of students whose classroom interactions had previously been videotaped. A 
small number of segments was chosen for replay, and students were invited to 
interpret their own and their partners' talk. These group interviews generally lasted 
15 to 20 minutes and were audiotaped for later transcription to supplement the 
lesson field notes. 

Students' views about learning mathematics were also investigated via semi- 
structured individual and whole-class interviews. Questions focused on how 
students thought their teacher expected them to work in class, what was the best 
way they had found to learn and understand mathematics, what they did to learn 
mathematics in the classroom, how their teacher and their classmates helped 
them to learn, and strategies they used for tackling mathematical problems. 
Information from all of these data sources is integrated into the account that 
follows. 



Merrilyn Goos 267 

Data Analysis 

Sociocultural research requires a unit of analysis that unites the individual and 
the social setting and takes into account motives, goals, norms, beliefs, and values 
in relationships between people. Analysis of the data, therefore, involved situated 

practices-the mathematical activities of the teacher and his students in the 
Mathematics C classroom. I carried out data collection and analysis simultaneously 
in order to generate categories and develop theoretical insights. The process of 

bringing structure and meaning to the data corpus involved three iterations (cf 
Anfara, Brown, & Mangione, 2002): category creation, category refinement, and 
theory development. 

The first iteration of analysis used field notes, video and audio recordings from 
the first four weeks of lesson observations to create initial categories for giving 
meaning to teacher actions. This resulted in nine categories, expressed as the 

following action statements: 

1. The teacher models mathematical thinking. 
2. The teacher asks students to clarify, elaborate, and justify their responses and 

strategies. 
3. The teacher emphasizes sense-making. 
4. The teacher makes explicit reference to mathematical conventions and 

symbolism. 
5. The teacher encourages reflection, self-monitoring, and self-checking. 
6. The teacher uses the students' ideas as starting points for discussion. 
7. The teacher structures students' thinking. 
8. The teacher encourages exploratory discussion. 
9. The teacher structures students' social interactions. 

In the second iteration, which continued through the remainder of the 1st year 
of the study, additional data from lesson observations were compared within and 
between categories to refine their meaning. For example, the second category was 
modified to read, "The teacher asks students to clarify, elaborate, and justify their 
responses and strategies, both to the teacher and to each other during whole class 
discussions." Evidence of teacher actions supporting this category included the 
following observations (each of which was recorded across many lessons): 

2.1 The teacher uses questioning to elicit these processes. 
2.2 The teacher encourages/permits other students to comment on the contribu- 

tion of previous student speakers. 
2.3 The teacher encourages argumentation between students, not mediated by the 

teacher. 

2.4 The teacher insists that students take responsibility for validating solutions. 

Early in the 2nd year of the study, a third iteration advanced the analysis toward 
developing theoretical insights about the teacher's role in initiating students into 
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a culture of mathematical inquiry. In this process, I attempted to identify the math- 
ematical attitudes and pedagogical expectations underlying the teacher's actions 
(cf van Oers, 2001) and to understand how these were appropriated by students. 
Drawing in part on the ZPD framework elaborated earlier in this article, I regrouped 
the existing categories of teacher actions to formulate a set of five statements that 
appeared to reflect the teacher's assumptions (i.e., attitudes and expectations) 
about mathematics teaching and learning. These are listed in the left column of 
Table 1. The first two assumptions identify in a general way the practices of math- 
ematical inquiry in which the teacher wished his students to participate, whereas 
the next three assumptions correspond to the interpretations of learning in the ZPD 
I have described as scaffolding, collaboration, and interweaving. I checked the plau- 
sibility of these statements via comparison with data already collected via teacher 
and student interviews and lesson observations and continued this comparative 
analysis throughout the 2nd year of the study as I conducted further observations 
and interviews. I also searched the data corpus for evidence of students' actions 
that suggested that they were (or were not) being pulled forward into the practices 
demonstrated and valued by the teacher. Thus, this third iteration featured a 
constant interplay between data and theory, from which emerged the overall find- 
ings shown in Table 1. The teacher actions and student actions listed here repre- 
sent a synthesis of evidence from the study as a whole. 

The overview in Table 1 gives only a broad indication as to how the teacher 
created a culture of mathematical inquiry. In the remainder of the article, I use exam- 
ples from the data collected over the 2 years of the study to illustrate these find- 
ings in more detail, and in particular to capture the changes in the teacher's and 
students' participation over time, as emphasized in Vygotsky's genetic method. 

THE MATURE COMMUNITY OF INQUIRY 

The teacher offered his Grade 12 Mathematics C classroom as a research site in 
the 1st year of the study. There were fourteen students in this class, six boys and 
eight girls, aged 16-17 years. The teacher had also taught this class in Grade 11. 
From initial lesson observations, it soon became clear that this was a classroom 
where a culture of mathematical inquiry appeared to have taken hold. For example, 
explanation and justification of ideas featured strongly in classroom social inter- 
actions (see Assumption 1 in Table 1), self-directed thinking and personal sense- 
making were emphasized (Assumption 2), and there was a high incidence of math- 
ematical discussion among students (Assumption 4). The teacher articulated his 
commitment to these principles during a stimulated recall interview as he watched 
a video recording of a lesson in which he had introduced the concept of simple 
harmonic motion to this class. 

He began the lesson by asking the students to line up facing him in single file in 
order of height, with the smallest student at the front of the line and the tallest at 
the back. This allowed all students to watch as the teacher slowly spun a large wheel, 
to the rim of which he had attached a marking pen. As students observed the spin- 
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Table 1 
Assumptions About Teaching and Learning Underlying Teacher and Student 
Mathematical Activity in the Mathematics C Classroom 

Assumptions Teacher actions Student actions 

1. Mathematical thinking The teacher models mathe- Students begin to offer 
is an act of sense-making matical thinking using a conjectures and justifica- 
and rests on the processes dialogic format to invite tions without the teacher's 
of specializing, general- students to participate. prompting. 
izing, conjecturing, and 
convincing. The teacher invites students During whole-class dis- 

to take ownership of the les- cussion, students initiate 
son content by providing inter- argumentation between 
mediate or final steps in themselves, without 
solutions or arguments teacher mediation. 
initiated by the teacher. 

The teacher withholds judg- 
ment on students' suggestions 
while inviting comment or 
critique from other students. 

2. The processes of mathe- The teacher asks questions Students begin to point out 
matical inquiry are accom- that encourage students to and correct their own and 
panied by habits of indi- question their assumptions each other's errors and 
vidual reflection and self- and locate their errors. those made by the teacher. 
monitoring. 

The teacher allows time in Students spontaneously 
class for students to read consult textbooks and 
textbook explanations and examples to clarify their 
interrogate worked examples. understanding. 

3. Mathematical thinking The teacher calls on students Students spontaneously 
develops through teacher to clarify, elaborate, critique, provide clarification, elab- 
scaffolding of the proces- and justify their assertions. oration, critiques, and 
ses of inquiry. justifications. 

The teacher structures stu- 
dents' thinking by leading Students take increasing 
them through strategic steps responsibility for suggest- 
or linking ideas to previously ing strategic steps and 
or concurrently developed making links to prior 
knowledge. knowledge. 

4. Mathematical thinking can The teacher structures social Students form informal 
be generated and tested by interactions between students groups to monitor their 
students through participa- by asking them to explain progress, seek feedback 
tion in equal-status peer and justify ideas and strate- on ideas, and explain 
partnerships. gies to each other. ideas to one another. 

5. Interweaving of familiar The teacher makes explicit Students begin to debate 
and formal knowledge reference to mathematical the appropriateness and 
helps students to adopt the language, conventions, and relative advantages of 
conventions of mathemati- symbolism, labeling conven- different symbol 
cal communication. tions as traditions that permit conventions. 

communication. 

The teacher links technical 
terms to commonsense 
meanings and uses multiple 
representations of new terms 
and concepts. 
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ning wheel from side on, the teacher asked them to focus on the pen as it moved 
in the vertical plane and think about how they would describe its motion. Students 
noticed that the pen seemed to be moving "up and down," "along the diameter." 
When the teacher pressed them to be more explicit, asking "What do you notice 
about how it's going up and down?" they replied, "Its velocity is changing" and 
"It's accelerating in the middle." After the students returned to their seats, the 
teacher initiated a discussion that brought into play their prior knowledge of 
circular motion ("What related stuff have we been studying recently?") and asked 
them to apply this knowledge to explain the apparent motion of the pen ("How 
might this be useful in explaining the phenomenon observed earlier in the lesson?"). 
At all times during this discussion, the teacher expected students to clarify their 
ideas ("Be more specific!") and monitor their thinking ("Are you sure?" and "Tell 
me if I'm wrong."). At several points, he interrupted the whole-class discussion to 
allow students to take some responsibility for constructing the mathematical 
description of simple harmonic motion (e.g., by asking students to work together 
to "now find out something about its acceleration" after having developed the 
formula for velocity). 

The teacher's commentary on the lesson videotape, elicited during a stimulated 
recall interview, revealed some of the pedagogical expectations he held for students 
and the mathematical attitudes from which these derived. Three themes that emerged 
from this interview concerned student engagement and ownership in making sense 
of mathematics, teacher modeling of the processes of inquiry, and the importance 
of communicating and explaining one's thinking. When the teacher viewed part of 
the videotape where he stepped back from the discussion and invited students to 
develop the acceleration equation for themselves, he commented that: 

I want to try as much as possible to get them to work it out for themselves. ... The 
other important thing about it as well, by doing it this way you've got a degree of owner- 
ship involved ... the kids are engaged, and I really think that's because they're owning 
what's going on, it's not just sitting there, listen to this and away you go. 

Similarly, when he asked students to reconstruct a mathematical argument devel- 
oped in a previous lesson on circular motion, he pointed out that: 

You're getting them to try to build some sense into it, by getting them to reconstruct 
it themselves they have to be able to make some sense out of it even if it's only internal 
consistency with the mathematics. 

Yet the teacher did not abandon students to work alone: on the contrary, he saw 
one of his responsibilities as modeling and scaffolding mathematical thinking. For 
example, when students were unsure whether the acceleration equation should 
contain 0 or (a)2, he urged them to "think about the result you're getting to, what 
are you trying to get out of this thing?" When viewing the videotape, he described 
this as: 

... a deliberate attempt to get them to focus on an endpoint, to think about where they're 
getting to, to see if that would help them along. There's as element of attempting to 
model the problem solving process in this as well. 
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The teacher expected students to explain and justify the ideas they contributed 
to whole-class discussions, as well as to critique the contributions of other students. 
He had at least two reasons for insisting that students did so, during the interview 

referring to the potential for peer interaction to promote understanding and also to 
connect everyday and mathematical language: 

I do think it's important that they're able to communicate with other people and their 
peers. They will learn at least as much from each other as they will with me. To be able 
to do that they have to talk to each other. It's also a part, one of the reasons I often force 
them to say things because they need to be able to use the language because the 
language itself carries very specific meanings; and unless they have the language they 
probably don't have the meanings properly either. They need the language to be able 
to, obviously communicate, but I think it also has something to do with their under- 
standing as well. 

In contrast with traditional classrooms where public talk in whole-class discus- 
sion must be channeled through the teacher, students in this classroom frequently 
directed their comments to each other without the teacher's mediation, thus 

sparking the kind of argumentation that would otherwise have to be orchestrated 

through teacher intervention. One such instance occurred during a lesson soon after 
the one that was the subject of the teacher's stimulated recall interview and 
involved students interrogating a worked example. 

The teacher regularly allowed time in class for students to study worked exam- 

ples so that they would learn to find their way independently through mathemat- 
ical texts. The examples, which also introduced students to the formal reasoning 
involved in applying new concepts, were then required to be fully explicated by 
students during whole-class discussion. Although students initially read in silence, 
after a short time they invariably turned to their neighbors either to seek clarifi- 
cation or to confirm their individual interpretations of the examples. This partic- 
ular example demonstrated how to describe the motion of a mass executing 
simple harmonic motion while suspended from a spring. During the ensuing 
whole-class discussion, some students questioned the change of notation from 
x = r cos cot (as used in the lesson described above that introduced simple 
harmonic motion) to x = a cos nt (a more general form that applies to all kinds 
of simple harmonic motion, not just that derived from a projection of uniform 
circular motion on a diameter of the circle). Rather than provide a rationale, the 
teacher withdrew from the discussion to allow students to resolve the issue for 
themselves: 

Rob: Why did they suddenly skip to a? 
Belinda: Because x is equal to a cos nt. 
Ben: Why use a and n when we have the exact same formula with r and o? Does it 

refer to o involving radians? 
Rob: On this side [referring to the handout containing the example-also used in the 

lesson that introduced simple harmonic motion] they said x = r cos cot, on the 
other side x = a cos nt. 

Belinda: Excuse me, I have a point to make here! You can't always use r because-[to 
teacher] Oh, sorry! [Teacher indicates she should continue.] I don't know if 
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anyone will agree with me- because you're not always using a circle, it's not 
always going to be the radius. 

Rob: Radius, yeah. 
Belinda: So the amplitude's not always the radius. 

By ceding control of this debate, the teacher provided an opportunity for students 
to seek and receive explanations from each other concerning the nature and appro- 
priateness of different notations until they were satisfied that they understood. 

The Grade 12 students' responses to interview questions during the 1st year of 
the study showed that they were remarkably well attuned to their teacher's goals 
and were aware that their classroom operated differently from others they had expe- 
rienced. From these interviews emerged three themes that corresponded closely to 
the beliefs expressed by the teacher in justifying his approach, indicating that 
students were appropriating his values and learning goals. 

First, students described how engagement in worthwhile tasks engendered a 
sense of personal ownership and developed their understanding. When the topic 
of working with peers arose during a whole-class interview, students commented: 

Duncan: You can work it out yourself, amongst the group, without having to be told. 
Belinda: With groups, if you've actually worked it through yourself and not just learned 

it off by heart then you're more likely to- 
Rob: -understand it. 

The second theme emerging from students' reflections on the classroom culture 
concerned the status of knowledge claims as conjectures that had to be validated 
by mathematical argument. This is illustrated by comments from a stimulated 
recall interview conducted with a group of Grade 12 students and based on a 

videotaped lesson segment that captured their lively discussion about a simple 
harmonic motion problem (MG is the author/interviewer, Rob a student): 
MG: One of the interesting things is that you don't just accept what each other says. 
Rob: We always assume everyone else is wrong about it! 
MG: But it's not just saying "No it isn't," "Yes it is." 
Rob: Yeah, we've got to be proven [sic] beyond all doubt! 

Finally, students voiced beliefs about the importance of explaining their 

thinking as a means of both evaluating and strengthening their understanding, 
echoing the teacher's commitment to encouraging students to explain their 

reasoning. For example, in an interview with the Grade 12 class near the end of 
the 1 st year of the study, students reflected on the cognitive benefits of explaining 
to peers: 
Duncan: So many times I find myself trying to explain something to other people, and you 

find something you've kind of missed yourself.... Even if they don't really know 
what they're doing, explaining it to them imprints it to your mind. 

Belinda: Yeah, and if you can explain it to someone else it means you know. 

Interestingly, these students insisted that mathematics was different from (and more 
enjoyable than) other subjects they studied at school because it was a more open 
field of inquiry involving learning through discussion rather than memorization: 
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Ben: In other subjects like Biology the teacher doesn't give you much time to talk to 
other students. Most of the time, she's [i.e., the teacher] talking. When I talk to 
Duncan about something, we get in trouble for talking. 

Duncan: It's more like learning parrot fashion. 
Belinda: It's mostly pure learning, so what do you discuss? It's already all proven ... 

Together, these beliefs about teaching and learning and the practices through 
which they were enacted provide insights into the culture of mathematical inquiry 
that had become established in this classroom. After confirming that this culture 
had already taken hold by Grade 12, I wished to investigate the particular 
teaching practices the teacher employed with a new group of students he had not 

previously taught. For this reason, the study continued in the following year with 
a Grade 11 Mathematics C class, comprising nine boys and one girl aged 15-16 

years. 

CREATING A COMMUNITY OF INQUIRY 

To understand how the community of inquiry developed over a period of time, 
it is necessary to examine both the specific teaching practices used by the teacher 
to create a variety of ZPDs and also the changing nature of students' participation 
over time. This relationship between teacher actions and students' changing partic- 
ipation is outlined in general terms in Table 1 and illustrated in more detail via the 
classroom vignettes presented below in chronological order as they occurred 

throughout the 1996 school year, comprising 41 teaching weeks. 

Week 11 (16 and 17 April) 

Early in the school year, the teacher placed explicit emphasis on modeling the 

processes of mathematical inquiry, structuring students' thinking and social inter- 
actions, and connecting students' developing ideas to mathematical language and 

symbolism. An example from two lessons on matrices about 2 months into the 
school year illustrates his actions and the students' responses. The annotated field 
notes from these lessons, which focus particularly on the teacher's actions, appear 
in the Appendix. 

The aim of the lessons was to have the students discover for themselves the algo- 
rithm for finding the inverse of a 2 x 2 matrix 

a b 

c d 

The teacher first chose a matrix A with a determinant of 1 and asked the students 
to find the inverse A-1 by using their existing knowledge of simultaneous equa- 
tions to solve the matrix equation AA-1 = I. He then elicited students' conjectures 
about the general form of the inverse matrix, based on the specific case they had 
examined. Since the nature of the example ensured that students would offer 
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d -b 

--c a 

as the inverse, the teacher was able to provide a realistic context for students to test 
this initial conjecture. A counterexample, whose inverse was found to have the form 

d -b 
] 

-c 
, 

L-caJ 

allowed the students to find a formula for n, which only then was labeled by the 
teacher as the determinant. 

In this example, the teacher modeled mathematical thinking by presenting a 

specific problem for students to work on and eliciting a series of conjectures that had 
to be tested by students in order to arrive at a valid generalization (thus illustrating 
the first assumption underlying a culture of inquiry; see Table 1). He prompted reflec- 
tion and self-monitoring (Assumption 2, also concerning the nature of mathematical 

inquiry) by asking questions such as "Can you check via matrix multiplication that 

you do get the identity matrix?" and "How could we verify this?" He further scaf- 
folded the processes of inquiry (Assumption 3, ZPD as scaffolding) by moving 
students' thinking forward ("How is this [the form of the inverse for the counter- 

example] related to Luke's conjecture?"), reminding them of the task goals ("What 
was the reason we wanted to find matrix inverses in the first place?"), and drawing 
on ideas developed during the lesson ("What did you divide by in the previous 
example?"). Students were asked to explain their solutions to each other, thus 
signaling that the teacher valued social interaction with peers as a means of gener- 
ating and testing mathematical thinking (Assumption 4, ZPD as collaboration). He 
also avoided using technical terms until students had developed an understanding of 
the underlying mathematical ideas (Assumption 5, ZPD as interweaving), saying 
"This thing is called the determinant," and then "Let's formalize what you've found." 

Week 14 (10 May) 

By about one third of the way through the school year, there was evidence that 
the Grade 11 students were beginning to appropriate forms of reasoning and 

patterns of social interaction consistent with the notion of inquiry mathematics that 
were valued by the teacher. The first example comes from a lesson on vectors, 3 
weeks after the matrix lessons summarized above. 

In this lesson, the teacher wished to clarify the distinction between position and 
displacement vectors, and to have the students discover and prove the relationship 
between them: if a and b are the position vectors of the points A and B, respec- 
tively, then the displacement vector AB is given by b - a. Instead of modeling his 
own thinking and inviting students to contribute specific segments of the solution 
as he had in earlier lessons, the teacher issued a very general instruction to "prove 
that to me geometrically, by drawing something." He then allowed sufficient time 
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for students to work on the task and circulated around the room posing questions 
and offering comments to individual students as needed to guide their thinking, such 
as "What's the really basic definition of vectors-what basic operation did we do 
first?" (past-oriented structuring); "You don't need numbers to prove something"; 
"If we're talking about position vectors they've got to go somewhere"; and "What 
is it we're trying to prove?" (all future-oriented structuring). 

It was noticeable that most students were now working together and sharing their 
ideas without the teacher's prompting. More significant was the observation that 
some were also beginning to offer their own ideas and questions during whole-class 
discussion. After the teacher elicited the proof most students had constructed, shown 
in Figure 1(a), one student (Adam) asked if he could "draw something up there" 
and proceeded to take charge at the whiteboard, modifying the diagram by 
constructing the vector sum of b and -a as shown in Figure 1(b). Impressed, the 
teacher validated Adam's alternative proof by carefully paraphrasing his reasoning 
to check his understanding: 
Teacher: OK that's very good, excellent! Stay there so I get it right. You've said that this 

is negative a and this goes this way, that's just b. So you've said b plus nega- 
tive a is just AB. 

Immediately another student asked whether subtracting a was different in this case 
from adding negative a, demonstrating that students were beginning to take respon- 
sibility for clarifying their understanding. Similarly, later in the lesson a group of 
students quizzed the teacher on the difference between the symbols used to denote 

A 
Ak 

AB 

B 

b 

a a 

A 

AB 

B 

b 

-a AB a + AB = b 
-a+a+AB= b-a 

AB = b - a b + -a =AB 

(a) Vector proof elicited by teacher (b) Vector proof offered by student 

Figure 1. Vector proofs 
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the magnitude of a vector (e.g., lal) and the absolute value of a number (e.g., 1-51), 
and asked him to explain the meaning of the "squiggle" used when hand writing 
the vector a as a. Distinguishing between similar symbols with different meanings, 
and different symbols with the same meaning, was an aspect of understanding math- 
ematical language often emphasized by the teacher, and the students' actions 

suggest they were becoming aware of the importance of such conventions. 

Week 17 (31 May) 
In a lesson that took place 3 weeks later, the teacher asked students to develop 

a method for finding the angle between two vectors 

3 5 
and 

2 1 

based on their knowledge of the formula for the dot product, a e b = lallbl cos 9, 
encountered for the first time only the previous day. Now the students were expected 
to advance their thinking without the teacher's scaffolding, and most spontaneously 
formed small groups and pairs to work on the task without his assistance for over 
10 minutes. Nevertheless, one student (Dennis) remained reluctant to share his 

thinking with peers and had to be deliberately encouraged by the teacher to do so: 

Teacher: Don't look at me in horror, Dennis, you can do it! But talk to people about it- 
talk to Rebecca, talk to Dean. 

(See Goos, Renshaw, & Galbraith, 1998, for a discussion of resistance to partici- 
pation in this and other classrooms.) 

Other students were still coming to terms with the teacher's insistence that they 
explain the reasoning that led to their answers. For example, when Adam calcu- 
lated that the angle between the vectors was 22.4' and announced that he had the 
answer, his friend Dean pointed out that the teacher "doesn't want the answer, he 
wants how you work out the angle." This point was reinforced by the teacher himself 
when he reconvened the class and nominated a student (Alex) to come to the white- 
board to present his solution. As Alex began to calculate the value of 

3 5 
2 1 

the teacher reminded him that he wanted a general equation first before any numer- 
ical substitution. Other students then began offering Alex suggestions and hints as 
to how to proceed: 

Adam: Rearrange it, Alex. 
Aaron: Yeah, rearrange it. 
Alex: Using... ? 
Aaron: Using, like, symbols. 
Adam: Look up on the board! [i.e., at the formula a * b = lallbl cos 6). Just write down 

the equation. 
Alex: So you work out a dot b using this method-[starts to substitute numbers again] 
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Teacher: I don't want to see anything to do with those numbers at all! 
Aaron: Alex, rearrange that equation so you get theta by itself. [Alex begins to do so.] 
Teacher: How's he going? Is he right? [Chorus from class, "Yes." Alex finishes rearranging 

formula to give 

= cos-l i0 ] 
lallb| 

Alex, that's great, that's spot on! 

Here Adam and Aaron appear to have appropriated teacher-like strategies in 

moving a peer's thinking forward, and they bypassed the teacher completely in 

directing their comments to the student at the whiteboard. Note that the purpose of 
their actions was not to publicly display their own knowledge for the teacher's eval- 
uation and approval--often the only reason why students are permitted to speak in 
traditional classrooms-but to assist in the construction of ajointly owned solution. 

Toward the end of the lesson, the teacher again pulled the students toward 
personal sense-making by asking how they could use the dot product formula to 
find out if two vectors were parallel or perpendicular. After allowing a few minutes 
for students to discuss this question with peers, the teacher called on Dylan to "tell 
us what he's found": 

Dylan: If a * b is zero they're perpendicular, because cosine 6 is cos 90" which is zero, 
so lal times Ibl times zero is zero. 

Teacher: Did everyone get that? 
Sean: No, I didn't! 

[Teacher paraphrases Dylan's answer.] 
Done! [indicating he now understands] 

Teacher: And how do you know if two vectors are parallel? 
Alex: They're in the same proportion, ratio. 
Teacher: What does that mean? How can we say that? 
Rhys: One is a scalar multiple of another. 
Teacher: [Tone of admiration] Very good, Rhys! 
Dennis: If one's negative, aren't they in different directions? 
Teacher: One must be two times the other, or a half, and if it's negative two times they're 

in different directions, right, but they're still parallel. 
This short exchange illustrates a growing maturity in students' participation- 

seen, for example, in Sean's willingness to publicly admit his confusion and ask 
for further explanation and in the ease with which Rhys responded to the teacher's 
demand for precision in formulating a mathematical definition of the properties of 
parallel vectors. Noteworthy, too, is Dennis's action in asking a question to clarify 
his understanding of the conditions for parallelism, since this student had previ- 
ously avoided contributing to whole-class discussions unless specifically called on 
to answer the teacher's questions. 

Week 29 (4 and 6 September) 

Well before the end of the school year, mathematical practices had been estab- 
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lished that were similar to those observed in the Grade 12 group of the previous 
year. One strategy the teacher used to actively engage students was to structure 
entire lessons around a complex problem so that the students would learn new 

concepts as they developed solution strategies. Pitching these problems at the edge 
of students' existing competence seemed to be highly effective in promoting 
collaborative peer interactions that brought together students with incomplete 
knowledge but comparable expertise. One memorable comment from a Grade 11 
student (Dean) illustrates this point and highlights the synergy inherent in comple- 
mentary competence. When Dean was shown part of a videotaped lesson in which 
he and his friend Adam were deeply engaged together in exploring a novel problem, 
he commented: 

Dean: Adam helps me [.. .] see things in different ways. Because, like, if you have two 
people who think differently and you both work on the same problem you both see 
different areas of it, and so it helps a lot more. More than having twice the brain, 
it's like having ten times the brain, having two people working on a problem. 

Peer tutoring interactions were also observed in which students guided the 

learning of less expert peers. One striking example of this type of assistance 
occurred during a lesson when students were investigating the iterative processes 
underlying fractals and chaos theory. The class had considered the example of the 
Middle Thirds Cantor Set, a fractal constructed by starting with a line of length 1, 
removing the middle third, then removing the middle third of the remaining 
segments and repeating this process infinitely many times. The point of the example 
was to prove that the sum of all lengths removed is equal to the length of the orig- 
inal line, a surprising and counterintuitive result. Students were then asked in a 
subsequent activity to find how much space is removed from the Middle Fifths 
Cantor Set. A common error made by many students was simply to substitute 1/5 
for 1/3 in the proof provided in the worked example. The worked example for 
Middle Thirds Cantor Set that was available to the students is shown in Table 2. 
The following edited transcript reveals how one student (Adam) helped his friend 
(Luke) to recognize this error. 
Luke: It's going to be a fifth instead of a third [pointing to example, no response from 

Adam]. Adam, it's going to be a fifth [points to example]. 
Adam: Just think ... start, work through it from the beginning. 
Luke: I am. [Writes] 
Adam: [Glances at Luke's work.] Work through it! [Emphatically] 
Luke: [Not looking up.] I am. [Looks up, puzzled.] What am I doing? [Checks example.] 

The size remaining's right, isn't it? [Adam looks at Luke's work and chuckles.] 
That's right! 

Adam: OK, you just do it. 
Luke: OK, fine, whatever. 
Adam: [Opens his own book and checks his working, grins at Luke.] Wrong! 
Luke: [Expression of disbelief on his face, looks at his working.] How and where? I 

cannot see where it could possibly be wrong! 
Adam: [Pauses, raises eyebrows, makes the decision to rescue Luke.] OK, explain this 

to me. Explain... explain this to me [pointing to Luke's working]. 
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Table 2 
Middle Thirds Cantor Set and Worked Example 

The Cantor Set 

The Cantor Set is constructed by starting with an interval of length 1 and removing the middle 
third, leaving the two remaining end intervals. This is the beginning of an iterative process, 
so the next step is to remove the middle third of the two remaining intervals. This can be 
repeated infinitely many times. 

1 

1/3 1/3 

1/9 1/9 1/9 1/9 

1/27 

Let us find out the total amount of space removed as it would appear that there might be 
nothing left after the final iteration. 

After the first iteration, 1/3 of the interval has been removed; after the second iteration, two 
sections of length (1/3)2 have been removed; and after the third interval, four sections of 
length (1/3)3 are deleted. This gives us the following pattern: 

Level 
0 

1 

2 

3 

n 

Length of Section Removed 
0 
1 
3 

2x(12 

4x 

2n-(x)n 

Finding the sum of these terms: 

S 
= +(12 21+413 +8(14 + 

=-+21 2+22i- +23-4+* +2n-1( 

1+ 2 + 221)2 + 23(-) 
+... 

+ 2n-1 

S 1 + 2 n-1 

- 
1 

+ 

l 

_ 

1 2 
2 + . . . 

+ 
2 l 

The section in the large set of brackets represents a converging GP with a = 1 and r = 2/3. 
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Table 2 (Continued) 
Using the formula for the sum to infinity of a converging GP: 

S =O 
a 

l-r 
1 

-12 
3 

1 

3 
=3 

Thus, the sum of all the lengths removed is 1/3 x 3 = 1, which is the length of the original 
section. 

Luke: What do you mean? This bit? OK, we start off with this thing. Length removed 
is nothing. Then we get here, length that's been removed is one fifth. 

Adam: Uh huh. 
Luke: Now we get, here. What we've lost is the original fifth, and ... [turns to Adam] 

two fifths [sounding hesitant]. 
Adam: No, you're doing each section, you haven't added them up yet. So you haven't 

lost the original fifth yet, we're ignoring that. 
Luke: OK. Out of each portion we- 
Adam: [Immediately] OK, how big's the section? [Smiles] Mmm? 
Luke: A fifth of... two fifths! ["Aha" expression on face, turns to Adam and grins. 

Adam grins back and raises eyebrows. Both laugh uproariously.] Now it gets 
tricky! [Luke circles the incorrect working and crosses it out.] Phew! [to Adam] 
You've given me food for thought! 

In this interaction, Adam refrained from telling Luke where the error was or 

showing how to fix it; instead, he acted as his teacher typically did in pressing for 

explanations and posing questions that would help his partner to find his error. By 
directing Luke's attention to the key aspect of the task and questioning him in this 

way, Adam adopted the teacher's role in the teacher-student dialogue pattern that 
had become so familiar in this classroom. 

A culture of collaboration such as that established by the teacher "primed" 
students to seek assistance from peers, and some of the Grade 11 students were very 
aware of the teacher's motives in this regard. For example, Alex chided Dylan for 

raising his hand to ask the teacher a question, pointing out that "He'll probably tell 

you to ask me, or ask other people!" Dylan later echoed this comment in declining 
the teacher's help: 
Dylan: [To teacher] Actually, you probably don't have to worry because Alex is trying 

to explain it to me. If he can't explain it I'll come to you. 
Alex: [To teacher] Yeah, you normally say to ask someone else first. 

One of the most convincing signs that the Grade 11 group had appropriated the 
teacher's view of mathematics as sense-making came 2 days after the Cantor Set 
lesson, when the class had moved on to investigating another example of geometric 
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iteration, the Koch snowflake. Dylan, a student who had previously displayed a 

highly instrumental approach to understanding mathematics (i.e., he was satisfied 
with knowing rules without reasons), was struggling with a task which asked 
students to prove that there is a limit to the area of a Koch snowflake curve. The 

following dialogue occurred after Dylan had spent several minutes with his hand 
raised hoping to seek the teacher's assistance. 

Dylan: [Plaintively] I can't keep going! I want to know why! 
Alex: [Looks up, both laugh] Have you got my disease? 

Dylan: Yeah! 
Alex: Dylan, wanting to know why! 
Dylan: Me wanting to know why is a first, but I just want to. It' s a proof-you need to 

understand it. (Alex resumes work, Dylan still has his hand raised.) 

Dylan's newfound insistence on knowing why, rather than glossing over elements 
of a proof he did not understand, indicates that he was moving toward fuller partic- 
ipation in the practices of mathematical inquiry-where understanding involves 

making personal sense of the concepts and reasoning conventions accepted by the 
wider community of mathematicians. 

DISCUSSION AND CONCLUSION 

The notion of learning mathematics in a community of practice has struck a chord 
with researchers interested in creating classroom environments that foster mindful, 
strategic learning by engaging students in collaborative forms of inquiry. This article 
has attempted to shed some light on how such communities can be created in upper- 
secondary-school mathematics classrooms. In particular, the research reported 
here extends the existing body of literature in this area by focusing in some detail 
on the enactment of teaching and learning practices through which the goals of 
reform-oriented curricula-with their emphasis on communication, reasoning, 
and problem solving-might be achieved. This research was conducted over an 
extended period of time, allowing the formation of the classroom community to 
be documented over the 2 years of senior secondary schooling. Although two 
different classes were observed during this period-a Grade 12 class in the 1st year, 
and a new Grade 11 class in the 2nd year-the emergent design of the study 
allowed attention to be given to how the teacher worked with the Grade 11 students 
to establish the culture of inquiry that appeared to be taken for granted by the Grade 
12 group. The involvement of classes in the senior years of secondary schooling 
is especially significant, since accountability pressures associated with syllabus 
coverage and high-stakes assessment might seem to favor more traditional 

approaches to teaching at this level of schooling. 
Sociocultural perspectives on learning offer mathematics education researchers 

a useful theoretical framework for analyzing learning as initiation into social prac- 
tices and meanings. However, conceptualizing learning as increasing participation 
in a community of practice raises two important questions: first, in what kinds of 
practices do we wish students to participate; and second, what specific actions should 
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a teacher take to improve students' participation? The first question is related to the 
nature of mathematical inquiry, which, for the teacher in this study, involved math- 
ematical attitudes he demonstrated through a commitment to personal sense-making 
and by his willingness to deal with more abstract ideas concerning conjecture, justi- 
fication, and proof. Typically, he modeled this process of inquiry by presenting 
students with a significant problem designed to engage them with a new mathe- 
matical concept, eliciting their initial conjectures about the concept, withholding his 
own judgment to maintain an authentic state of uncertainty regarding the validity 
of these conjectures, and orchestrating discussion or presenting further problems that 
would assist students to test their conjectures and justify their thinking to others. 

This example provides a generalized template for what a teacher might actually 
do to facilitate students' participation in a community of mathematical inquiry. 
Specifically, the zone of proximal development was invoked as an explanatory 
framework for learning that can explicitly inform teaching practice. This study 
outlined three ways in which a teacher and students can set up ZPDs-through scaf- 
folding, peer collaboration, and the interweaving of spontaneous and theoretical 
concepts--each of which highlights the teacher's central position in assisting 
students to appropriate mathematics as cultural knowledge. 

In the early stages of Grade 11, the teacher scaffolded the students' thinking by 
providing a predictable structure for inquiry through which he enacted his expec- 
tations regarding sense-making, ownership, self-monitoring, and justification. As 
the school year progressed, the teacher gradually withdrew his support to pull 
students forward into more independent engagement with mathematical ideas. For 
their part, the students responded by completing tasks with decreasing teacher assis- 
tance but also by proposing and evaluating alternative solutions, often bypassing 
the teacher in whole-class discussions to answer questions posed by fellow students. 
Some students additionally adopted teacher-like scaffolding strategies to assist less 
capable peers, for example, by asking questions that led their partner to locate an 
error or reconsider a solution plan. This reorganization of classroom social inter- 
actions is crucial to understanding that the creation of the ZPD is a process of nego- 
tiating personal meanings and comparing these with conventional interpretations 
from the community of mathematicians. 

Peer interactions can also create a collaborative ZPD, and it was clear from 
students' interview responses that they believed this kind of participation frame- 
work provided opportunities to test their understanding and validate their conjec- 
tures through mathematical argument with peers. Again, the teacher played a vital 
role in initially orchestrating these interactions, inviting students to explain their 
thinking to neighbors or ask a friend for help before consulting him as a last resort. 

ZPDs created by interweaving spontaneous and theoretical concepts challenge 
students to integrate their existing language and experiences with the more abstract 
concepts and precise terminology of mathematics. Making connections between 
everyday and scientific concepts was accomplished in a variety of settings in the 
classroom. For example, during initial class discussion of a task, the teacher para- 
phrased or reinterpreted students' language to introduce appropriate mathematical 



Merrilyn Goos 283 

terms for the ideas they expressed. Typically, students then formed pairs or small 
groups to tackle the task and were free to use their own informal and imprecise 
language. When the teacher subsequently reconvened the class and invited students 
to explain their solutions, he insisted that they use conventional mathematical 
language and explicate their reasoning in full. 

These positive examples of learning as initiation into mathematical practice prob- 
ably present too idealized an image of the classroom as a community of inquiry, 
when it is more correct to say that there were noticeable differences in the nature 
and extent of students' participation. A small number of students resisted the 
teacher's efforts to move them toward more independent and critical engagement 
with mathematical tasks, for example, by waiting for the teacher to hand over the 
required knowledge or by avoiding constructive interaction with peers. Learning 
in the ZPD is a process of coming to be as well as one of coming to know (Litowitz, 
1993), and one should not naively assume that participation implies inclusion or 
that all students willingly identify with the teacher's mathematical attitude and 
expectations. 

In addressing the research question of how the teacher initiated his students into 
a culture of inquiry, analysis of the data presented here illuminated some issues but 
inevitably left others in shadow. In keeping with contemporary sociocultural 
theory, a more complete analysis would take into account the students' previous 
histories of mathematics learning and the knowledge, values, and experiences 
they brought to school from their home and family contexts, and investigate how 
the teacher's interpretation of these histories structured his interactions with 
students. The influence of the institutional context on learning in this classroom 
also deserves more careful analysis by expanding the concept of "community" to 
include the school and those who supported its goals and activities. For example, 
one question that might arise from this study concerns the teacher's relationships 
with other teachers within and outside the mathematics department, with the 
school's leadership team (e.g., principal and deputy principal), and with parents 
of the students he taught, and how he situated his pedagogical practices and goals 
within this network of relationships. Further research is also needed to widen the 
scope of this study beyond the Mathematics C classrooms and school considered 
here to provide a richer picture of constraints and opportunities in implementing 
inquiry mathematics approaches in different settings. A sociocultural theoretical 
approach has the potential to inform this research and improve understanding of 
how learners can be pulled forward into mature participation in communities of 
mathematical practice. 
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APPENDIX 

Annotated Field Notes for Grade 11 Lessons on Matrices 

Annotations in the first column link observations to the categories outlined in the 
data analysis methods section of the article. S and Ss refer to student(s); T refers 
to teacher. 

Grade 11 Mathematics C lesson #1: Finding the inverse of a 2 x 2 matrix 

Annotation Interaction 

Structures S's T reminds Ss of procedure for 
thinking (past) finding inverse of a 2 x 2 

matrix using simultaneous 
equations. Asks Ss to solve 
the resulting equations. 
Ss provide equations and 
solution. 
T: So the inverse of 

3 1 2 -1 
is . 52 -5 3 

Encourages T: Can you check via matrix 
self-checking multiplication that you do get 

the identity matrix? 
Ss confirm this is so. 

Models T: Is it inefficient to do this 
mathematical every time? Ss concur. 
thinking T: Could we find a shortcut? 

Luke suggests reversing the 
position of a and d, and 

Withholds placing minus signs in front 
judgment of b and c. 
Invites T elicits symbolic representa- 
ownership tion and writes on whiteboard. 

Models T: How could we verify this? 
mathematical Ss suggest doing another one. 
thinking T provides another example; 

asks students to use "Luke's 
conjecture" to write down the 
hypothetical inverse and 
check via matrix multiplica- 
tion. Ss do so--they are con- 
vinced the method works. 

Whiteboard 

52i cd 0 1 
3a + c =1 

5a + 2c =O0 
3b + d =0 

5b + 2d =1 
a =2, b= -1, c = -5, d= 3 

Inverse of 

Sab d -b] 
cd d -ca 

1 1 -1 2J 
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Annotation Interaction 

Structures S's T gives another example for 

thinking Ss to try. 
(future) Gradual increase in S talk as 

they realize Luke's conjecture 
doesn't work for this one 

(matrix multiplication does 
not yield the identity matrix). 

Structures S's T reminds Ss they can still 

thinking (past) find the inverse by solving 
simultaneous equations. Ss do 
so and verify via matrix 
multiplication. 

Structures S's T: How is this related to 

thinking Luke's conjecture? (which is 

(future) half right). Ss reply that the 
first attempt is too big by a 
factor of 5, so they need to 
divide by 5. 

Structures S's T: What did you divide by in 

thinking the previous example? 
(present) Ss realize they could divide 

by 1. 

Models T: So the new method (divid- 
mathematical ing by something) works. But 
thinking how do you know what to 

divide by? 

Sense-making; Homework: Find a rule that 
invites works for these two cases. 

ownership Test it on another matrix of 

your choice. 

Whiteboard 

4 1 ]. e2-1? Inverse I 7I 
3 2 -34 

4 1 2 -1 5 0 

3 2 -3 4 0 
51 

2 -1 
5 5 Inverse is55 
-3 4 
. 5 F 

1-1f 
1211 IT 
I 

1 
inverse 

1 

Li1 -1 2 
1 1 
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Grade 11 Mathematics C lesson #2: Inverse and determinant of a 2 x2 matrix 

Annotation Interaction 

T asks Ss to remind him of 
the matrix worked on last 
lesson (homework). The first 
try gave 

5 0 

0 5 

you had to adjust by dividing 
by five. (Ss were to find a 
rule for the divisor.) 
T: What was the divisor? 
Dean: ad - bc. 

Invites T: Did you invent your own 
ownership matrix and test it? 

Ss: Yes, it worked. 

Mathematical T names "this thing" (ad - bc) 
conventions as the determinant. 
and symbolism T: Let's formalize what 

you've found. What would I 
write as the inverse of 

[ab9?cd] 

Alex volunteers the formula, 
which T writes on whiteboard. 
Luke: Would the inverse of a 
3 x 3 matrix be similar? 
T: Yes, but it's messy-you 
can use your graphics calcula- 
tor to do it. You need to be 
able to find the inverse of a 
2 x 2 matrix longhand. 
Rhys: What part of that is the 
determinant? 
T labels ad - bc and writes 
the symbol and name "del" 
on whiteboard. 

Whiteboard 

4 1 2 -1 5 0 

3 2 -3 4 0 5 

2 

01 
55 

-3 4 
5 5 

ad d -b 

ad- bc -c a 

V = ad - bc 
del 
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Annotation Interaction 

Models T puts another example on 
mathematical whiteboard and asks Ss to 
thinking (test find the inverse. 
conjecture After working for a short time 
with another Ss begin to murmur "zero." 
example) They find that ad - bc, the 

determinant of the matrix, is 
zero; therefore, the inverse 
cannot be calculated. 

Demonstrates Rhys: Is our method still 

ownership of wrong? 
idea T: No. Remember, some ele- 

ments of the real number sys- 
tem have no inverse. So what 
is the test to find if a matrix is 
noninvertible? 
Luke: The determinant is zero. 

Mathematical T: A noninvertible matrix is 
language called a singular matrix. 

What happens if you try to 
invert this matrix using your 
graphics calculator? 
Ss try it: see "error" message. 

Structures S's T: We can think about this 
thinking another way. Remember how 
(present) to use simultaneous equation 

method to find the inverse.... 
What happens if the matrix is 
singular? First find the in- 
verse of this matrix, using 
simultaneous equations. 
Ss work on solving the simul- 
taneous equations. 
T tours the room. Asks Adam, 
"Have you done it?" 
Adam: No. 

Structures S's T: Then ask Aaron (beside 
social Adam) to explain it. 
interaction Ss finish finding solutions. 

Whiteboard 

Find I: 1 
%2 41 

2 1 10 

2a + c =1 
2b + d =0 

a + c =0 
b+d=1 

a=l,c=-l,b=-l,d-=2 
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Annotation Interaction 

Structures S's T: What is this related to, 
thinking (past) from Junior maths? 

Ss: Finding the intersection 
of two lines. 
T: These are all linear equa- 
tions so we could solve them 
by graphing. 
Ss use graphics calculators to 
find graphical solutions. 
T: So one way to find the in- 
verse is to set up simulta- 
neous equations and solve 
(algebraically or graphically). 
Now try to find the inverse of 

36 
24 

(which we just found is singu- 
lar) by solving simultaneous 
equations graphically. 
Ss find parallel lines-no 
solution. 

Structures S's T: Another interesting thing 
thinking ... you know how to turn a 
(future) matrix equation into simulta- 

neous equations ... (Ss do the 
conversion and solve the 
equations). 
T: Can we do the reverse? 
What if I gave you the simul- 
taneous equations-how 
would you make a matrix 
equation? 
Aaron explains how the 
numbers and the letters are 
arranged in matrix formation. 
T: What was the reason we 
wanted to find matrix inverses 
in the first place? 
Rhys: We couldn't divide by 
a matrix! 

Whiteboard 

4 2 a 10 

4a + 2b = 10 
a+b=3 
a=2, b=1 
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Annotation Interaction 

Structures S's T reminds Ss where they left 
thinking (past) off previous work on solving 

a problem that required divi- 
sion of one matrix by another 
(like the equation on the 
whiteboard). 
T: Recall the parallel with the 
real number system ... to 
solve this algebraic equation 
you'd multiply both sides by 
the multiplicative inverse of 3. 

Sense-making; Homework: Solve the matrix 
invites equation (by "inventing" 
ownership matrix algebra). 

Whiteboard 

4 2a 10 

1 b J 
3 x=6 
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