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Abstract

The partial correlation coefficient quantifies the relationship between two

variables while taking into account the effect of one or multiple control

variables. Researchers often want to synthesize partial correlation coefficients

in a meta-analysis since these can be readily computed based on the reported

results of a linear regression analysis. The default inverse variance weights in

standard meta-analysis models require researchers to compute not only the

partial correlation coefficients of each study but also its corresponding

sampling variance. The existing literature is diffuse on how to estimate this

sampling variance, because two estimators exist that are both widely used. We

critically reflect on both estimators, study their statistical properties, and pro-

vide recommendations for applied researchers. We also compute the sampling

variances of studies using both estimators in a meta-analysis on the partial

correlation between self-confidence and sports performance.
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Highlights

What is already known
• The partial correlation coefficient quantifies the relationship between two

variables while taking into account the effect of one or multiple control
variables.

• Meta-analyses on partial correlation coefficients are regularly conducted in
different research fields.

What is new
• The literature on estimators of the sampling variance of the partial correla-

tion coefficient is diffuse. Two different estimators of the sampling variance
are frequently used in practice.

• Our critical reflection and assessment of the statistical properties of the estima-
tors show that the estimator derived in Olkin and Siotani (1976) and Anderson
(1984) is preferred for meta-analyzing partial correlation coefficients.
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Potential impact for RSM readers outside the authors' field
• The quality of meta-analyses on partial correlation coefficients will be

improved if researchers are using the recommended estimator of the sam-
pling variance of the partial correlation coefficient.

1 | INTRODUCTION

Meta-analysts often want to synthesize the results of a
linear regression model where the effect of interest is the
relation between an independent variable and a depen-
dent variable when controlling for other variables in the
model. Meta-analyses on these so-called partial effects
are becoming more common1 and are regularly con-
ducted in, for example, psychology2–6 and economics.7–11

The partial correlation coefficient (PCC) can be used as
effect size measure in these meta-analyses. The PCC
quantifies the relationship between the independent and
dependent variables where there is controlled for the
effect of the other variables in both the independent and
dependent variable.12,13 Each study's PCC needs to be
accompanied by its sampling variance, because effect
sizes in a meta-analysis are generally weighted by the
inverse of the sampling variance. The existing literature
is diffuse on how to compute the sampling variance of
the PCC. Two different estimators are available in the lit-
erature and both are used in practice. The goal of this
paper is to compare both estimators and provide recom-
mendations for researchers on how to compute the sam-
pling variance of a PCC.

2 | STATISTICAL MODEL

Let N be the number of independent observations with
Yi denoting the observed score on the dependent variable
of participant i. We write the population linear regression
model as

Yi ¼ β0þβ1Xi1þ���þβMXiM þϵi

where β0 is the intercept, β1Xi1 is the regression coeffi-
cient of the independent variable X1, βMXiM refers to the
m¼ 1, � � �,Mth regression coefficient of the independent

variable Xm, and ϵi is the sampling error that is assumed
to follow a normal distribution with mean zero and vari-
ance σ2.

3 | PARTIAL CORRELATION
COEFFICIENT

The PCC between variables Y and X1 controlled for vari-
able X2 can be estimated using12–15

rp ¼ rY1� rY2r12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2Y2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r212

p ð1Þ

where the Pearson correlation coefficients between Y
and X1, Y and X2, and X1 and X2 are denoted by rY1, rY2,
and r12, respectively. Estimating Equation (1) can only be
used when controlling for a single variable. An alterna-
tive estimating equation for the PCC between Y and X1

that allows for controlling for one or more variables
is16–18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21

b21þVar b1½ �df

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21

t21þdf

s
ð2Þ

where b1 is the estimate of β1, df refers to the degrees of
freedom that are equal to N�M�1, and t1 is the t-statis-
tic of the test H0 : β1 ¼ 0. Estimating Equation (2) is espe-
cially useful in the context of meta-analysis, because
Pearson correlation coefficients between all variables
included in the model are usually not reported in the pri-
mary studies and it allows for more than one control
variable.

Fisher19 noted that the probability density function
(PDF) of the PCC is the same as of a Pearson correlation
coefficient except for the degrees of freedom. Hence, the
exact PDF of the PCC is (equation (25) of Hotelling20)

f rpjρ;df
� �¼ dfffiffiffiffiffi

2π
p Γ df þ1ð Þ

Γ df þ1:5ð Þ 1�ρ2
� �0:5 dfþ1ð Þ

1� r2p
� �0:5 df�2ð Þ

1�ρrp
� ��df�0:5

2F1 0:5,0:5,df þ1:5,
1þρrp

2

� �
ð3Þ

van AERT and GOOS 521

 17592887, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1632 by T
ilburg U

niversity L
ibrary, W

iley O
nline L

ibrary on [08/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where ρ is the PCC in the population, the degrees of free-
dom (i.e., df) are equal to N�M�1, Γ is the gamma
function, and 2F1 is the Gaussian hypergeometric func-
tion. The exact PDF if ρ¼ 0 simplifies to a Student's t-
distribution and is commonly used for test-
ing H0 : ρ¼ 0,21

rpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2p

� �
=df

r � tdf : ð4Þ

4 | SAMPLING VARIANCE OF THE
PARTIAL CORRELATION
COEFFICIENT

We continue with describing two popular estimators for
estimating the sampling variance of the PCC before we
reflect on their statistical properties.

4.1 | Estimators

The first estimator of the sampling variance of the PCC
that we describe has been derived in Olkin and Sio-
tani14 and Chapter 4 of Anderson.22 Its estimating
equation is

s21 ¼
1� r2p

� �2

df
: ð5Þ

Note that the numerator in estimating Equation (5) is
equal to the numerator of the sampling variance of the
Pearson correlation coefficient (e.g., see equation (11.35)
in Borenstein and Hedges23). Only the denominators dif-
fer, because the number of regression coefficients (i.e.,
M) are included in the degrees of freedom that are in the
denominator of estimating Equation (5). This estimator is
the large sample approximation of the variance of the
PCC if rp is replaced by ρ in Equation (5).

The second estimator is reported on page 25 of the
popular book on meta-analysis by Stanley and Doucou-
liagos.17 Its estimating equation is

s22 ¼
1� r2p
df

: ð6Þ

The square root of this second estimator is actually
equal to the standard error used in Equation (4) for com-
puting the t-statistic. This implies that this estimator is
derived conditional on ρ¼ 0.

Preliminary observations when comparing both esti-
mators are that the difference between the estimators s21
and s22 is in the numerators where the term 1� r2p

� �
is

squared in s21 but not in s22. This implies that both estima-
tors yield the same estimates if rp ¼ 0. Furthermore, it
also implies that s21 < s22 for rp ≠ 0, because the numerator
of s21 is always smaller than the numerator of s22.

4.2 | Comparing the estimators

We compared s21 and s22 with the variance obtained using
the exact PDF in (3) for a PCC between two variables
while controlling for one variable (i.e., M¼ 2). That is,
we computed s21, s

2
2, and the variance using the exact PDF

for 1000 equidistant values of ρ that range from �0.99 to
0.99. We assumed that the PCC is an unbiased estimate
of ρ* and computed s21, s

2
2 by replacing rp in Equations (5)

and (6) by ρ. The selected levels of the sample size were
N ¼ 8;16;32;64. The variance based on the exact PDF was
obtained by computing the second moment of the PDF,

Z 1

�1
rp�ρ
� �2

f rpjρ;df
� �

drp:

The software R27 (Version 4.2.2) was used for the ana-
lyses. The Gaussian hypergeometric function implemen-
ted in the R package “gsl”28 (Version 2.1.7.1) was used for
evaluating the exact PDF. R code of the analyses is avail-
able at https://osf.io/pqvyx.

Figure 1 shows the variance of the PCC for the different
estimators where each subfigure contains the results of a
particular sample size N . The properties of the different
estimators were most manifest for the top-left subfigure
with N ¼ 8. The variances of the PCC using s21 (green
dashed line) and s22 (orange dashed line) were equal to
each other for ρ¼ 0 but larger than the variance based on
the exact PDF (black solid line). If ρ≠ 0, s22 approached
the variance based on the exact distribution whereas s21 was
always larger than the variance based on the exact PDF
and s22. These patterns are also apparent in the other sub-
figures of Figure 1 with larger N . The differences between
both s21 and s22 and the variance based on the exact PDF
decreased as a function of N where s21 approached the
variance based on the exact PDF more rapidly than s22.

5 | EXAMPLE

We computed s21 and s22 for the meta-analysis by Craft
et al.29 on the PCC between self-confidence and sports
performance when controlling for cognitive and somatic
anxiety. These data were obtained from table 16.2 of

522 van AERT and GOOS
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Becker and Aloe.1 Table 1 shows these data together with
s21 and s22 and the corresponding standard errors (i.e.,

ffiffiffiffi
s21

p
and

ffiffiffiffi
s22

p
). R code of this analysis is available at https://

osf.io/gtcux.
The results confirm the earlier observations of sec-

tion 4.2. First, s21 < s22 for all studies. Second, the differ-
ence between s21 and s22 were small if the PCC was close
to zero (e.g., IDs 10 and 38). However, the difference
between s21 and s22 was larger if the PCC was not close to
zero. For example, rp = 0.654 for the study with ID = 22,
and s22 was almost twice as large as s21 (0.0060 vs. 0.0034).

6 | DISCUSSION

PCCs are frequently used as effect size measure in a
meta-analysis. We have reflected on two estimators of
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FIGURE 1 Results of analyses examining the statistical properties of estimating the variance of the PCC based on the exact PDF (solid

black line, Equation 3) and estimators s21 (green dashed line, Equation 5) and s22 (orange dashed line, Equation 6). Different subfigures refer

to different total sample sizes (i.e., N). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Data of eight studies of the meta-analysis by Craft

et al.29

ID N rp s21 s22
ffiffiffiffi
s21

p ffiffiffiffi
s22

p
1 142 0.536 0.0037 0.0052 0.0607 0.0719

3 37 0.332 0.0240 0.0270 0.1549 0.1642

10 14 �0.070 0.0990 0.0995 0.3147 0.3155

22 100 0.654 0.0034 0.0060 0.0584 0.0772

26 51 0.044 0.0212 0.0212 0.1456 0.1457

28 128 0.247 0.0071 0.0076 0.0843 0.0870

36 70 0.434 0.0100 0.0123 0.0999 0.1109

38 30 �0.024 0.0384 0.0384 0.1960 0.1961

Note: ID = study identifier, N = total sample size; rp = estimated partial
correlation coefficient; s21 = estimated variance with Equation (5);
s22 = estimated; variance with Equation (6);

ffiffiffiffi
s21

p
= square root of s21;ffiffiffiffi

s22
p

= square root of s22.
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the sampling variance of the PCC and examined their
properties. This revealed that the estimator proposed in
Stanley and Doucouliagos17 was derived under the
assumption of a zero PCC in the population. This esti-
mator is especially biased when the PCC in the popula-
tion is different from zero and the sample size is small.
Hence, we recommend researchers to use the estimator
that was derived in Olkin and Siotani14 and Anderson,22

because this estimator can be used for a zero and non-
zero PCC in the population.

Using a suboptimal estimator of the sampling vari-
ance biases the results of a meta-analysis, because the
inverse of the variances are typically used as weights.
Another reason why accurate estimation of the sampling
variance is of importance is that the sampling variance or
the square root of the sampling variance (i.e., standard
error) are often used for assessing small-study effects.
Small-study effects refer to the tendency of small studies
to go along with larger effect sizes, and one of the possi-
ble causes of small-study effects is publication bias.30,31

Commonly used methods to test and correct for
small-study effects are Egger's regression test30 and
PET-PEESE32 that require researchers to include the
sampling variance or its square root as moderator in a
meta-regression model.

We have focused on the PCC as effect size measure.
An alternative option is to not meta-analyze PCCs
directly, but first apply Fisher's z transformation and use
the transformed PCCs as effect size measure in the
meta-analysis.18,22 This is analogous to how Pearson
correlation coefficients are frequently meta-analyzed.
A desirable property of this Fisher's z transformation is
that the sampling distribution of a study's transformed
effect size is approximately normally distributed. It is
especially beneficial to apply the Fisher's z transformation
for PCCs that are not close to zero, because the normality
assumption is then more likely violated when meta-
analyzing untransformed PCCs. Another desirable prop-
erty of the Fisher's z transformation is that the sampling
variance is independent of the PCC. This sampling vari-
ance of Fisher's transformed PCCs can be estimated with
1= N�3�M�1ð Þ where M�1 are the number of control
variables.19,22

To summarize, the frequently used estimating equa-
tion of the sampling variance of the PCC by Stanley and
Doucouliagos17 should only be used in a meta-analysis if
the PCC in the population is zero. Hence, we recommend
to abandon this estimator and use the estimator derived
in Olkin and Siotani14 and Anderson22 instead.
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