687 research outputs found

    El uso sabio de la ausencia en la aventura intelectual de Macedonio FernĂĄndez

    Get PDF

    A new small-bodied azhdarchoid pterosaur from the Lower Cretaceous of England and its implications for pterosaur anatomy, diversity and phylogeny

    Get PDF
    BACKGROUND: Pterosaurs have been known from the Cretaceous sediments of the Isle of Wight (southern England, United Kingdom) since 1870. We describe the three-dimensional pelvic girdle and associated vertebrae of a small near-adult pterodactyloid from the Atherfield Clay Formation (lower Aptian, Lower Cretaceous). Despite acknowledged variation in the pterosaur pelvis, previous studies have not adequately sampled or incorporated pelvic characters into phylogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: The new specimen represents the new taxon Vectidraco daisymorrisae gen. et sp. nov., diagnosed by the presence of a concavity posterodorsal to the acetabulum and the form of its postacetabular process on the ilium. Several characters suggest that Vectidraco belongs to Azhdarchoidea. We constructed a pelvis-only phylogenetic analysis to test whether the pterosaur pelvis carries a useful phylogenetic signal. Resolution in recovered trees was poor, but they approximately matched trees recovered from analyses of total evidence. We also added Vectidraco and our pelvic characters to an existing total-evidence matrix for pterosaurs. Both analyses recovered Vectidraco within Azhdarchoidea. CONCLUSIONS/ SIGNIFICANCE: The Lower Cretaceous strata of western Europe have yielded members of several pterosaur lineages, but Aptian pterosaurs from western Europe are rare. With a pelvis length of 40 mm, the new animal would have had a total length of c. 350 mm, and a wingspan of c. 750 mm. Barremian and Aptian pterodactyloids from western Europe show that small-bodied azhdarchoids lived alongside ornithocheirids and istiodactylids. This assemblage is similar in terms of which lineages are represented to the coeval beds of Liaoning, China; however, the number of species and specimens present at Liaoning is much higher. While the general phylogenetic composition of western European and Chinese communities appear to have been approximately similar, the differences may be due to different palaeoenvironmental and depositional settings. The western Europe pterodactyloid record may therefore be artificially low in diversity due to preservational factors

    Phylogenetic signal of genomic repeat abundances can be distorted by random homoplasy: a case study from hominid primates

    Get PDF
    The genomic abundance of different types of repetitive DNA elements contains a phylogenetic signal useful for inferring the evolutionary history of different groups of organisms. Here we test the reliability of this approach using the Hominidae family of primates, whose consensus phylogeny is well accepted. We used the software RepeatExplorer to identify the different repetitive DNA clusters and quantify their abundances. With these data, we performed phylogenetic analyses by maximum parsimony, including one, two or three individuals per species, technical replicates, and including or discarding two clusters of repetitive elements (i.e. a satellite DNA and an endogenous retrovirus) that generated random homoplasy, because they were abundant in Pan and Gorilla but almost absent in Homo and Pongo. The only phylogenetic tree congruent with the accepted topology for hominids, thus coinciding with that obtained from the mitogenomes of the same individuals, was the one built after filtering out the libraries for the two homoplasious clusters and using three individuals per species. Our results suggest some caution in the use of repeat abundance for phylogenetic studies, because some element abundances are homoplasious, which severely distorts the phylogenetic signal owing to their differential amplification among evolutionary lineages

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de AgronomĂ­a. Departamento de MĂŠtodos Cuantitativos y Sistemas de InformaciĂłn; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas; ArgentinaFil: Bena, MarĂ­a Julia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Godoy BĂźrki, Ana Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de AgrobiotecnologĂ­a del Litoral. Universidad Nacional del Litoral. Instituto de AgrobiotecnologĂ­a del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; Argentin

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary

    Get PDF
    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous

    Constructing majority-rule supertrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supertree methods combine the phylogenetic information from multiple partially-overlapping trees into a larger phylogenetic tree called a supertree. Several supertree construction methods have been proposed to date, but most of these are not designed with any specific properties in mind. Recently, Cotton and Wilkinson proposed extensions of the majority-rule consensus tree method to the supertree setting that inherit many of the appealing properties of the former.</p> <p>Results</p> <p>We study a variant of one of Cotton and Wilkinson's methods, called majority-rule (+) supertrees. After proving that a key underlying problem for constructing majority-rule (+) supertrees is NP-hard, we develop a polynomial-size exact integer linear programming formulation of the problem. We then present a data reduction heuristic that identifies smaller subproblems that can be solved independently. While this technique is not guaranteed to produce optimal solutions, it can achieve substantial problem-size reduction. Finally, we report on a computational study of our approach on various real data sets, including the 121-taxon, 7-tree Seabirds data set of Kennedy and Page.</p> <p>Conclusions</p> <p>The results indicate that our exact method is computationally feasible for moderately large inputs. For larger inputs, our data reduction heuristic makes it feasible to tackle problems that are well beyond the range of the basic integer programming approach. Comparisons between the results obtained by our heuristic and exact solutions indicate that the heuristic produces good answers. Our results also suggest that the majority-rule (+) approach, in both its basic form and with data reduction, yields biologically meaningful phylogenies.</p

    Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity

    Get PDF
    Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various sabertoothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Conclusions/Significance: Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional diversity studies, and may reveal novel patterns of morphospace occupation

    Oldest Known Eucalyptus Macrofossils Are from South America

    Get PDF
    The evolutionary history of Eucalyptus and the eucalypts, the larger clade of seven genera including Eucalyptus that today have a natural distribution almost exclusively in Australasia, is poorly documented from the fossil record. Little physical evidence exists bearing on the ancient geographical distributions or morphologies of plants within the clade. Herein, we introduce fossil material of Eucalyptus from the early Eocene (ca. 51.9 Ma) Laguna del Hunco paleoflora of Chubut Province, Argentina; specimens include multiple leaves, infructescences, and dispersed capsules, several flower buds, and a single flower. Morphological similarities that relate the fossils to extant eucalypts include leaf shape, venation, and epidermal oil glands; infructescence structure; valvate capsulate fruits; and operculate flower buds. The presence of a staminophore scar on the fruits links them to Eucalyptus, and the presence of a transverse scar on the flower buds indicates a relationship to Eucalyptus subgenus Symphyomyrtus. Phylogenetic analyses of morphological data alone and combined with aligned sequence data from a prior study including 16 extant eucalypts, one outgroup, and a terminal representing the fossils indicate that the fossils are nested within Eucalyptus. These are the only illustrated Eucalyptus fossils that are definitively Eocene in age, and the only conclusively identified extant or fossil eucalypts naturally occurring outside of Australasia and adjacent Mindanao. Thus, these fossils indicate that the evolution of the eucalypt group is not constrained to a single region. Moreover, they strengthen the taxonomic connections between the Laguna del Hunco paleoflora and extant subtropical and tropical Australasia, one of the three major ecologic-geographic elements of the Laguna del Hunco paleoflora. The age and affinities of the fossils also indicate that Eucalyptus subgenus Symphyomyrtus is older than previously supposed. Paleoecological data indicate that the Patagonian Eucalyptus dominated volcanically disturbed areas adjacent to standing rainforest surrounding an Eocene caldera lake
    • …
    corecore