3,405 research outputs found

    Analysis of multiple incidence angle SIR-B data for determining forest stand characteristics

    Get PDF
    For the first time in the U.S. space program, digital synthetic aperture radar (SR) data were obtained from different incidence angles during Space Shuttle Mission 41-G. Shuttle Imaging Radar-B (SIR-B) data were obtained at incidence angles of 58 deg., 45 deg., and 28 deg., on October 9, 10, and 11, 1984, respectively, for a predominantly forested study area in northern Florida. Cloud-free LANDSAT Thematic Mapper (T.M.) data were obtained over the same area on October 12. The SIR-B data were processed and then digitally registered to the LANDSAT T.M. data by scientists at the Jet Propulsion Laboratory. This is the only known digitally registered SIR-B and T.M. data set for which the data were obtained nearly simultaneously. The data analysis of this information is discussed

    Ionic liquids and continuous flow processes: a good marriage to design sustainable processes

    Get PDF
    In the last few years the use of Ionic Liquids (ILs) as alternative solvents for (bio)catalytic processes has increased substantially, and the benefits and different approaches reported to combine continuous flow systems and ILs are at the core of this overview. The synergy between both elements allowed us to highlight their great potential in manufacturing both bulk and fine chemicals by new and greener (bio)catalytic processesThis work was partially supported by MINECO, Spain (Ref: CTQ2011-28903) and Generalitat Valenciana (PROMETEO 2012/020) and UJI (P1-1B 2013-37

    Binding of Al(III) to synthetic RNA and metal-mediated strand aggregation

    Get PDF
    Over the last few years, focused interest in aluminum has been heightened by recent studies regarding its health effects. Its possible relation with chronic diseases makes it convenient to address more in depth the reactivity of aluminum with biologically relevant molecules. The present work investigates the interaction of the aluminum ion with two synthetic RNAs, poly(rA) and poly(rU), through a detailed thermodynamic and kinetic study. The trivalent aluminum ion was kept in solution by complexation with the cacodylate anion, even at neutral pH, thus making the study with biological molecules feasible. The results obtained by spectrophotometry, circular dichroism, viscometry and thermal stability measurements indicate that aluminium strongly interacts with single and duplex RNA structures. The kinetic experiments point out that, even though cacodylate is required to keep the metal in solution, it actually inhibits the reaction of aluminum with RNA as it converts the metal into an unreactive dimer species. Notably, further interaction occurred in an excess of the aluminum/cacodylate complex, inducing aggregation of single-stranded RNAs. An analysis of the kinetic data has shown that the modes of aggregation of the two RNAs differ and such a difference can be ascribed to the diverse polynucleotide secondary structures. The observed stabilization of multiple-stranded systems by aluminum can serve as a model for future studies due to the interest aroused by this metal in the study of non-canonical nucleic acid structures

    Bluetooth Mesh Analysis, Issues, and Challenges

    Get PDF
    BLE is a widely used short-range technology which has gained a relevant position inside the Internet-of-Things (IoT) paradigm development thanks to its simplicity, low-power consumption, low-cost and robustness. New enhancements over BLE have focused on supporting mesh network topology. Compared to other mesh networks, BLE mesh has only considered a managed flooding protocol in its first version. Managed flooding may generally seem inefficient in many contexts, but it is a high desirable option when data transmission is urgent, the network is small or its configuration changes in a very dynamic way. Knowing the interest to many application contexts, this paper analyses the impact of tweaking several features over the reliability and efficiency of the mesh network. These features are configured and controlled in different layers: message repetition schemes, the transmission randomization, the election of a scheme based on an acknowledged or unacknowledged transmission, etc. In order to estimate the real performance of a mesh network deployment, this paper evaluates the effects of the interaction of the chosen parameters, their appropriate adjustment in relation with the characteristics of real implementations and the true overhead related to the whole protocol stack. The paper identifies configuration challenges, proposes network tuning criteria and outlines possible standard improvements. For this purpose, a detailed assessment on the implementation and execution of real devices has been performed with their chipset limitations

    Macroporous polymers tailored as supports for large biomolecules: Ionic liquids as porogenic solvents and as surface modifiers

    Get PDF
    Highly ordered rod-like polymeric monoliths with large-pores have been successfully synthesized using ionic liquids (ILs) IL-1 (1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [BMIM][NTf2]) and IL-2 (1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [OMIM][NTf2]) as alternative porogenic solvents. The presence of ILs can not only promote the formation of a highly ordered macroporous structure, control the morphology of the polymer and control the chemical composition of surfaces for monoliths prepared from DVB. In this regard, post-functionalization of the monoliths can be easily achieved using the functional monomers introduced in the polymerization process or the unreacted vinyl groups present in the polymeric matrix. This control has allowed the preparation of monolithic Supported Ionic Liquid-like Phases (m-SILLPs) with excellent morphological properties. These m-SILLPs have been studied as supports for large biomolecules. Bioadsorption studies show that the adsorbed amount of protein reaches values as high as 150–200 mg of protein per gram of support

    Fuzzy logic tuning of a PI controller to improve the performance of a wind turbine on a semi-submersible platform under different wind scenarios

    Get PDF
    The integration of renewable energy sources in power systems, specially wind energy, is growing as environmental concerns arise in society. Nevertheless, the low amount of viable sites onshore or in shallow waters restricts the use of wind energy. In this sense, offshore semi-submersible platforms appear as an option, which in addition enables the integration of complementary elements, for instance wave energy converters. However, the complexity of the system increases due to the interactions between the platform movements and the wind turbine, and traditional control techniques do not enable to cope with these interactions in an easy way, hence limiting the efficiency of energy harvesting. Intelligent control techniques are an option with a great potential to take full account of the said interactions and to improve energy production efficiency. Still, it is required to have simulation models including those effects beforehand, so that the effects of a designed controller on the system can be evaluated. This paper presents an original fuzzy logic controller that tunes a reference controller, improving its performance according to a developed methodology that allows evaluation of controllers for wind turbines in semi-submersible platforms. The resulting fuzzy logic controller allows higher efficiency concerning mechanical loads in the system, electric energy production and tracking error of the speed reference.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community

    Get PDF
    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services

    Tuning lipase B from Candida antarctica C–C bond promiscuous activity by immobilization on poly-styrene-divinylbenzene beads

    Get PDF
    Lipase B from Candida antarctica (CALB) is able to catalyze C–C bond formation. After immobilization onto a hydrophobic PS-DVB support, the activity increases when compared to that of the soluble or tan – the commercially available Novozyme 435 (being up to 6 fold more active). Our results show that although this activity is not related to the catalytic group, the promiscuous activity of CALB may be tuned via immobilization. In addition, we have show that the secondary structure of both immobilized enzymes is quite different, using FT-ATR-IR spectroscopy
    • …
    corecore