242 research outputs found

    Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein

    Get PDF
    Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named "correctors". So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be improved by generating conformationally-locked bithiazoles. In the present study, we investigated the effect of tricyclic pyrrolothiazoles as analogues of constrained bithiazoles. Thirty-five compounds were tested using the functional assay based on the halide-sensitive yellow fluorescent protein (HS-YFP) that measured CFTR activity. One compound, having a six atom carbocyle central ring in the tricyclic pyrrolothiazole system and bearing a pivalamide group at the thiazole moiety and a 5-chloro-2-methoxyphenyl carboxamide at the pyrrole ring, significantly increased F508del-CFTR activity. This compound could lead to the synthesis of a novel class of CFTR correctors

    Memantine in the Prevention of Radiation-Induced Brain Damage: A Narrative Review

    Get PDF
    Preserving cognitive functions is a priority for most patients with brain metastases. Knowing the mechanisms of hyperglutamatergic neurotoxicity and the role of some hippocampal areas in cognitive decline (CD) led to testing both the antiglutamatergic pharmacological prophylaxis and hippocampal-sparing whole-brain radiotherapy (WBRT) techniques. These studies showed a relative reduction in CD four to six months after WBRT. However, the failure to achieve statistical significance in one study that tested memantine alone (RTOG 0614) led to widespread skepticism about this drug in the WBRT setting. Moreover, interest grew in the reasons for the strong patient dropout rates in the first few months after WBRT and for early CD onset. In fact, the latter can only partially be explained by subclinical tumor progression. An emerging interpretation of the (not only) cognitive impairment during and immediately after WBRT is the dysfunction of the limbic and hypothalamic system with its immune and hormonal consequences. This new understanding of WBRT-induced toxicity may represent the basis for further innovative trials. These studies should aim to: (i) evaluate in greater detail the cognitive effects and, more generally, the quality of life impairment during and immediately after WBRT; (ii) study the mechanisms producing these early effects; (iii) test in clinical studies, the modern and advanced WBRT techniques based on both hippocampal-sparing and hypothalamic-pituitary-sparing, currently evaluated only in planning studies; (iv) test new timings of antiglutamatergic drugs administration aimed at preventing not only late toxicity but also acute effects

    Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel

    Get PDF
    F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF

    Small molecule anionophores promote transmembrane anion permeation matching CFTR activity

    Get PDF
    Anion selective ionophores, anionophores, are small molecules capable of facilitating the transmembrane transport of anions. Inspired in the structure of natural product prodigiosin, four novel anionophores 1a-d, including a 1,2,3-triazole group, were prepared. These compounds proved highly efficient anion exchangers in model phospholipid liposomes. The changes in the hydrogen bond cleft modified the anion transport selectivity exhibited by these compounds compared to prodigiosin and suppressed the characteristic high toxicity of the natural product. Their activity as anionophores in living cells was studied and chloride efflux and iodine influx from living cells mediated by these derivatives was demonstrated. These compounds were shown to permeabilize cellular membranes to halides with efficiencies close to the natural anion channel CFTR at doses that do not compromise cellular viability. Remarkably, optimal transport efficiency was measured in the presence of pH gradients mimicking those found in the airway epithelia of Cystic Fibrosis patients. These results support the viability of developing small molecule anionophores as anion channel protein surrogates with potential applications in the treatment of conditions such as Cystic Fibrosis derived from the malfunction of natural anion transport mechanisms.European Union’s Horizon 2020 research and innovation programme under grant agreement No. 667079, La Marató de TV3 Foundation (20132730), Consejería de Educación de la Junta de Castilla y León (Projects BU340U13 and BU092U16

    Normal calcium-activated anion secretion in a mouse selectively lacking TMEM16A in intestinal epithelium

    Get PDF
    Calcium-activated anion secretion is expected to ameliorate cystic fibrosis, a genetic disease that carries an anion secretory defect in exocrine tissues. Human patients and animal models of the disease that present a mild intestinal phenotype have been postulated to bear a compensatory calcium-activated anion secretion in the intestine. TMEM16A is calcium-activated anion channel whose presence in the intestinal epithelium is contradictory. We aim to test the functional expression of TMEM16A using animal models with Cftr and/or Tmem16a intestinal silencing. Expression of TMEM16A was studied in a wild type and intestinal Tmem16a knockout mice by mRNA-seq, mass-spectrometry, q-PCR, Western blotting and immunolocalization. Calcium-activated anion secretion was recorded in the ileum and proximal colon of these animals including intestinal Cftr knockout and double mutants with dual Tmem16a and Cftr intestinal ablation. Mucus homeostasis was studied by immune-analysis of Mucin-2 (Muc2) and survival curves were recorded. Tmem16a transcript was found in intestine. Nevertheless, protein was barely detected in colon samples. Electrophysiological measurements demonstrated that the intestinal deletion of Tmem16a did not change calcium-activated anion secretion induced by carbachol or ATP in ileum and proximal colon. Muc2 architecture was not altered by Tmem16a silencing as was observed when Cftr was deleted from mouse intestine. Tmem16a silencing neither affected animal survival nor modified the lethality observed in the intestinal Cftr-null mouse. Our results demonstrate that TMEM16A function in the murine intestine is not related to electrogenic calcium-activated anion transport and does not affect mucus homeostasis and survival of animals

    Alternative Splicing at a NAGNAG Acceptor Site as a Novel Phenotype Modifier

    Get PDF
    Approximately 30% of alleles causing genetic disorders generate premature termination codons (PTCs), which are usually associated with severe phenotypes. However, bypassing the deleterious stop codon can lead to a mild disease outcome. Splicing at NAGNAG tandem splice sites has been reported to result in insertion or deletion (indel) of three nucleotides. We identified such a mechanism as the origin of the mild to asymptomatic phenotype observed in cystic fibrosis patients homozygous for the E831X mutation (2623G>T) in the CFTR gene. Analyses performed on nasal epithelial cell mRNA detected three distinct isoforms, a considerably more complex situation than expected for a single nucleotide substitution. Structure-function studies and in silico analyses provided the first experimental evidence of an indel of a stop codon by alternative splicing at a NAGNAG acceptor site. In addition to contributing to proteome plasticity, alternative splicing at a NAGNAG tandem site can thus remove a disease-causing UAG stop codon. This molecular study reveals a naturally occurring mechanism where the effect of either modifier genes or epigenetic factors could be suspected. This finding is of importance for genetic counseling as well as for deciding appropriate therapeutic strategies

    High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs

    Get PDF
    Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl/I exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of 42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format

    Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines

    Get PDF
    The pharmacology of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel has attracted significant interest in recent years with the aim to search for rational new therapies for diseases caused by CFTR malfunction. Mutations that abolish the function of CFTR cause the life-threatening genetic disease cystic fibrosis (CF). The most common cause of CF is the deletion of phenylalanine 508 (ΔF508) in the CFTR chloride channel. Felodipine, nifedipine, and other antihypertensive 1,4-dihydropyridines (1,4-DHPs) that block L-type Ca(2+) channels are also effective potentiators of CFTR gating, able to correct the defective activity of ΔF508 and other CFTR mutants ( Mol. Pharmacol. 2005 , 68 , 1736 ). For this purpose, we evaluated the ability of the previously and newly synthesized 4-imidazo[2,1-b]thiazoles-1,4-dihydropyridines without vascular activity and inotropic and/or chronotropic cardiac effects ( J. Med. Chem. 2008 , 51 , 1592 ) to enhance the activity of ΔF508-CFTR. Our studies indicate compounds 17, 18, 20, 21, 38, and 39 as 1,4-DHPs with an interesting profile of activity

    Assessment of p.Phe508del-CFTR functional restoration in pediatric primary cystic fibrosis airway epithelial cells

    Get PDF
    © 2018 Sutanto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background Mutations in the cystic fibrosis transmembrane regulator (CFTR) gene can reduce function of the CFTR ion channel activity and impair cellular chloride secretion. The gold standard method to assess CFTR function of ion transport using the Ussing chamber requires a high number of airway epithelial cells grown at air-liquid interface, limiting the application of this method for high throughput screening of potential therapeutic compounds in primary airway epithelial cells (pAECs) featuring less common CFTR mutations. This study assessed an alternative approach, using a small scale halide assay that can be adapted for a personalized high throughput setting to analyze CFTR function of pAEC. Methods Pediatric pAECs derived from children with CF (pAEC CF ) were established and expanded as monolayer cultures, before seeding into 96-well plates for the halide assay. Cells were then transduced with an adenoviral construct containing yellow fluorescent protein (eYFP) reporter gene, alone or in combination with either wild-type CFTR (WT-CFTR) or p.Phe508-del CFTR. Four days post transduction, cells were stimulated with forskolin and genistein, and assessed for quenching of the eYFP signal following injection of iodide solution into the assay media. Results Data showed that pAEC CF can express eYFP at high efficiency following transduction with the eYFP construct. The halide assay was able to discriminate functional restoration of CFTR in pAEC CF treated with either WT-CFTR construct or the positive controls syntaxin 8 and B-cell receptor-associated protein 31 shRNAs. Significance The current study demonstrates that the halide assay can be adapted for pediatric pAEC CF to evaluate restoration of CFTR function. With the ongoing development of small molecules to modulate the folding and/or activity of various mutated CFTR proteins, this halide assay presents a small-scale personalized screening platform that could assess therapeutic potential of molecules across a broad range of CFTR mutations
    corecore