14,404 research outputs found

    Transient upsets in microprocessor controllers

    Get PDF
    The modeling and analysis of transient faults in microprocessor based controllers are discussed. Such controllers typically consist of a microprocessor, read only memory storing and application program, random access memory for data storage, and input/output devices for external communications. The effects of transient faults on the performance of the controller are reviewed. An instruction level perspective of performance is taken which is the basis of a useful high level program state description of the microprocessor controller. A transition matrix is defined which determines the controller's response to transient fault arrivals

    A discrete-pulse optimal control algorithm with an application to spin systems

    Full text link
    This article is aimed at extending the framework of optimal control techniques to the situation where the control field values are restricted to a finite set. We propose a generalization of the standard GRAPE algorithm suited to this constraint. We test the validity and the efficiency of this approach for the inversion of an inhomogeneous ensemble of spin systems with different offset frequencies. It is shown that a remarkable efficiency can be achieved even for a very limited number of discrete values. Some applications in Nuclear Magnetic Resonance are discussed

    Frank's constant in the hexatic phase

    Full text link
    Using video-microscopy data of a two-dimensional colloidal system the bond-order correlation function G6 is calculated and used to determine the temperature-dependence of both the orientational correlation length xi6 in the isotropic liquid phase and the Frank constant F_A in the hexatic phase. F_A takes the value 72/pi at the hexatic to isotropic liquid phase transition and diverges at the hexatic to crystal transition as predicted by the KTHNY-theory. This is a quantitative test of the mechanism of breaking the orientational symmetry by disclination unbinding

    Lane-formation vs. cluster-formation in two dimensional square-shoulder systems: A genetic algorithm approach

    Full text link
    Introducing genetic algorithms as a reliable and efficient tool to find ordered equilibrium structures, we predict minimum energy configurations of the square shoulder system for different values of corona width λ\lambda. Varying systematically the pressure for different values of λ\lambda we obtain complete sequences of minimum energy configurations which provide a deeper understanding of the system's strategies to arrange particles in an energetically optimized fashion, leading to the competing self-assembly scenarios of cluster-formation vs. lane-formation.Comment: 5 pages, 6 figure

    Being Healthy: a Grounded Theory Study of Help Seeking Behaviour among Chinese Elders living in the UK

    Get PDF
    The health of older people is a priority in many countries as the world’s population ages. Attitudes towards help seeking behaviours in older people remain a largely unexplored field of research. This is particularly true for older minority groups where the place that they have migrated to presents both cultural and structural challenges. The UK, like other countries,has an increasingly aging Chinese population about who relatively little is known. This study used a qualitative grounded theory design following the approach of Glaser (1978). Qualitative data were collected using semi-structured interviews with 33 Chinese elders who were aged between 60 and 84, using purposive and theoretical sampling approaches. Data were analysed using the constant comparative method until data saturation occurred and a substantive theory was generated. ‘Being healthy’ (the core category) with four interrelated categories: self-management, normalizing/minimizing, access to health services, and being cured form the theory. The theory was generated around the core explanations provided by participants and Chinese elders’ concerns about health issues they face in their daily life. We also present data about how they direct their health-related activities towards meeting their physical and psychological goals of being healthy. Their differential understanding of diseases and a lack of information about health services were potent predictors of non�help seeking and ‘self’ rather than medical management of their illnesses. This study highlights the need for intervention and health support for Chinese elders

    Efficient Algorithms for Optimal Control of Quantum Dynamics: The "Krotov'' Method unencumbered

    Full text link
    Efficient algorithms for the discovery of optimal control designs for coherent control of quantum processes are of fundamental importance. One important class of algorithms are sequential update algorithms generally attributed to Krotov. Although widely and often successfully used, the associated theory is often involved and leaves many crucial questions unanswered, from the monotonicity and convergence of the algorithm to discretization effects, leading to the introduction of ad-hoc penalty terms and suboptimal update schemes detrimental to the performance of the algorithm. We present a general framework for sequential update algorithms including specific prescriptions for efficient update rules with inexpensive dynamic search length control, taking into account discretization effects and eliminating the need for ad-hoc penalty terms. The latter, while necessary to regularize the problem in the limit of infinite time resolution, i.e., the continuum limit, are shown to be undesirable and unnecessary in the practically relevant case of finite time resolution. Numerical examples show that the ideas underlying many of these results extend even beyond what can be rigorously proved.Comment: 19 pages, many figure

    Studies of the radiation hardness of oxygen-enriched silicon detectors

    Get PDF
    Detectors of high-energy particles sustain substantial structural defects induced by the particles during the operation period. Some of the defects have been found to be electrically active, degrading the detector's performance. Understanding the mechanisms of the electrical activities and learning to suppress their influence are essential if long 'lifetime' detectors are required. This work report s about radiation hardness of silicon P-I-N devices fabricated from oxygen-enriched, high-resistivity material. The high and nearly uniform concentration of oxygen in float-zone silicon has been achie ved by diffusion of oxygen from SiO2 layers

    Soft Spheres Make More Mesophases

    Full text link
    We use both mean-field methods and numerical simulation to study the phase diagram of classical particles interacting with a hard-core and repulsive, soft shoulder. Despite the purely repulsive interaction, this system displays a remarkable array of aggregate phases arising from the competition between the hard-core and shoulder length scales. In the limit of large shoulder width to core size, we argue that this phase diagram has a number of universal features, and classify the set of repulsive shoulders that lead to aggregation at high density. Surprisingly, the phase sequence and aggregate size adjusts so as to keep almost constant inter-aggregate separation.Comment: 4 pages, 2 included figure

    Numerical Simulation of Illumination and Thermal Conditions at the Lunar Poles Using LOLA DTMs

    Get PDF
    We are interested in illumination conditions and the temperature distribution within the upper two meters of regolith near the lunar poles. Here, areas exist receiving almost constant illumination near areas in permanent shadow, which were identified as potential exploration sites for future missions. For our study a numerical simulation of the illumination and thermal environment for lunar near-polar regions is needed. Our study is based on high-resolution, twenty meters per pixel and 400 x 400 km large polar Digital Terrain Models (DTMs), which were derived from Lunar Orbiter Laser Altimeter (LOLA) data. Illumination conditions were simulated by synthetically illuminating the LOLA DTMs using the horizon method considering the Sun as an extended source. We model polar illumination for the central 50 x 50 km subset and use it as an input at each time-step (2 h) to evaluate the heating of the lunar surface and subsequent conduction in the sub-surface. At surface level we balance the incoming insolation with the subsurface conduction and radiation into space, whereas in the sub-surface we consider conduction with an additional constant radiogenic heat source at the bottom of our two-meter layer. Density is modeled as depth-dependent, the specific heat parameter as temperature-dependent and the thermal conductivity as depth- and temperature-dependent. We implemented a fully implicit finite-volume method in space and backward Euler scheme in time to solve the one-dimensional heat equation at each pixel in our 50 x 50 km DTM. Due to the non-linear dependencies of the parameters mentioned above, Newton's method is employed as the non-linear solver together with the Gauss-Seidel method as the iterative linear solver in each Newton iteration. The software is written in OpenCL and runs in parallel on the GPU cores, which allows for fast computation of large areas and long time scales
    • …
    corecore