275 research outputs found

    Animal vocal sequences: not the Markov chains we thought they were.

    Get PDF
    Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins.This is the author's accepted manuscript and will be under embargo until the 20th of August 2015. This final version is published by Royal Society Publishing here: http://dx.doi.org/10.1098/rspb.2014.1370

    Neuronal deletion of the circadian clock gene Bmal1 induces cell-autonomous dopaminergic neurodegeneration

    Get PDF
    Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD

    Social density processes regulate the functioning and performance of foraging human teams

    Get PDF
    Social density processes impact the activity and order of collective behaviours in a variety of biological systems. Much effort has been devoted to understanding how density of people affects collective human motion in the context of pedestrian flows. However, there is a distinct lack of empirical data investigating the effects of social density on human behaviour in cooperative contexts. Here, we examine the functioning and performance of human teams in a central-place foraging arena using high-resolution GPS data. We show that team functioning (level of coordination) is greatest at intermediate social densities, but contrary to our expectations, increased coordination at intermediate densities did not translate into improved collective foraging performance, and foraging accuracy was equivalent across our density treatments. We suggest that this is likely a consequence of foragers relying upon visual channels (local information) to achieve coordination but relying upon auditory channels (global information) to maximise foraging returns. These findings provide new insights for the development of more sophisticated models of human collective behaviour that consider different networks for communication (e.g. visual and vocal) that have the potential to operate simultaneously in cooperative contexts

    When Less Is Best: Female Brown-Headed Cowbirds Prefer Less Intense Male Displays

    Get PDF
    Sexual selection theory predicts that females should prefer males with the most intense courtship displays. However, wing-spread song displays that male brown-headed cowbirds (Molothrus ater) direct at females are generally less intense than versions of this display that are directed at other males. Because male-directed displays are used in aggressive signaling, we hypothesized that females should prefer lower intensity performances of this display. To test this hypothesis, we played audiovisual recordings showing the same males performing both high intensity male-directed and low intensity female-directed displays to females (N = 8) and recorded the females' copulation solicitation display (CSD) responses. All eight females responded strongly to both categories of playbacks but were more sexually stimulated by the low intensity female-directed displays. Because each pair of high and low intensity playback videos had the exact same audio track, the divergent responses of females must have been based on differences in the visual content of the displays shown in the videos. Preferences female cowbirds show in acoustic CSD studies are correlated with mate choice in field and captivity studies and this is also likely to be true for preferences elucidated by playback of audiovisual displays. Female preferences for low intensity female-directed displays may explain why male cowbirds rarely use high intensity displays when signaling to females. Repetitive high intensity displays may demonstrate a male's current condition and explain why these displays are used in male-male interactions which can escalate into physical fights in which males in poorer condition could be injured or killed. This is the first study in songbirds to use audiovisual playbacks to assess how female sexual behavior varies in response to variation in a male visual display

    Combinatoriality in the vocal systems of nonhuman animals

    Get PDF
    A key challenge in the field of human language evolution is the identification of the selective conditions that gave rise to language's generative nature. Comparative data on nonhuman animals provides a powerful tool to investigate similarities and differences among nonhuman and human communication systems and to reveal convergent evolutionary mechanisms. In this article, we provide an overview of the current evidence for combinatorial structures found in the vocal system of diverse species. We show that considerable structural diversity exits across and within species in the forms of combinatorial structures used. Based on this we suggest that a fine‐grained classification and differentiation of combinatoriality is a useful approach permitting systematic comparisons across animals. Specifically, this will help to identify factors that might promote the emergence of combinatoriality and, crucially, whether differences in combinatorial mechanisms might be driven by variations in social and ecological conditions or cognitive capacities

    Acoustic sequences in non-human animals: a tutorial review and prospectus.

    Get PDF
    Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise - let alone understand - the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 'Analysing vocal sequences in animals'. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.This review was developed at an investigative workshop, “Analyzing Animal Vocal Communication Sequences” that took place on October 21–23 2013 in Knoxville, Tennessee, sponsored by the National Institute for Mathematical and Biological Synthesis (NIMBioS). NIMBioS is an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426, with additional support from The University of Tennessee, Knoxville. In addition to the authors, Vincent Janik participated in the workshop. D.T.B.’s research is currently supported by NSF DEB-1119660. M.A.B.’s research is currently supported by NSF IOS-0842759 and NIH R01DC009582. M.A.R.’s research is supported by ONR N0001411IP20086 and NOPP (ONR/BOEM) N00014-11-1-0697. S.L.DeR.’s research is supported by the U.S. Office of Naval Research. R.F.-i-C.’s research was supported by the grant BASMATI (TIN2011-27479-C04-03) from the Spanish Ministry of Science and Innovation. E.C.G.’s research is currently supported by a National Research Council postdoctoral fellowship. E.E.V.’s research is supported by CONACYT, Mexico, award number I010/214/2012.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1111/brv.1216

    Linking social complexity and vocal complexity: a parid perspective

    Get PDF
    The Paridae family (chickadees, tits and titmice) is an interesting avian group in that species vary in important aspects of their social structure and many species have large and complex vocal repertoires. For this reason, parids represent an important set of species for testing the social complexity hypothesis for vocal communication—the notion that as groups increase in social complexity, there is a need for increased vocal complexity. Here, we describe the hypothesis and some of the early evidence that supported the hypothesis. Next, we review literature on social complexity and on vocal complexity in parids, and describe some of the studies that have made explicit tests of the social complexity hypothesis in one parid—Carolina chickadees, Poecile carolinensis. We conclude with a discussion, primarily from a parid perspective, of the benefits and costs of grouping and of physiological factors that might mediate the relationship between social complexity and changes in signalling behaviour

    Studying synapses in human brain with array tomography and electron microscopy

    Get PDF
    Postmortem studies of synapses in human brain are problematic due to the axial resolution limit of light microscopy and the difficulty preserving and analyzing ultrastructure with electron microscopy. Array tomography overcomes these problems by embedding autopsy tissue in resin and cutting ribbons of ultrathin serial sections. Ribbons are imaged with immunofluorescence, allowing high-throughput imaging of tens of thousands of synapses to assess synapse density and protein composition. The protocol takes approximately 3 days per case, excluding image analysis, which is done at the end of the study. Parallel processing for transmission electron microscopy (TEM) using a protocol modified to preserve structure in human samples allows complimentary ultrastructural studies. Incorporation of array tomography and TEM into brain banking is a potent way of phenotyping synapses in well-characterized clinical cohorts to develop clinico-pathological correlations at the synapse level. This will be important for research in neurodegenerative disease, developmental diseases, and psychiatric illness
    corecore