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SUMMARY 21 

 22 

Many animals produce vocal sequences that appear complex. Most researchers assume that 23 

these sequences are well characterised as Markov chains, i.e. that the probability of a 24 

particular vocal element can be calculated from the history of only a finite number of 25 

preceding elements. However, this assumption has never been explicitly tested. Furthermore, 26 

it is unclear how language could evolve in a single step from a Markovian origin, as is 27 

frequently assumed, as no intermediate forms have been found between animal 28 

communication and human language. Here we assess whether animal taxa produce vocal 29 

sequences that are better described by Markov chains, or by non-Markovian dynamics such 30 

as the “renewal process”, characterised by a strong tendency to repeat elements. We 31 

examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, 32 

Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes 33 

Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca, 34 

and orangutans Pongo spp. The vocal systems of most of these species are more consistent 35 

with a non-Markovian renewal process than with the Markovian models traditionally 36 

assumed. Our data suggest that non-Markovian vocal sequences may be more common than 37 

Markov sequences, which must be taken into account when evaluating alternative hypotheses 38 

for the evolution of signalling complexity, and perhaps human language origins. 39 

 40 

KEYWORDS: Language evolution, renewal process, vocal complexity 41 

  42 
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1. INTRODUCTION 43 

 44 

Many species of animals produce vocalisations comprising multiple element types, combined 45 

into complex sequences. Some species have vocal repertoires of tens or even hundreds of 46 

discrete elements; others have only a handful, but use them to generate a wide variety of 47 

combinations. For example, an individual mockingbird Mimus polyglottos can mimic over 48 

100 distinct song types of different species, and combine them into diverse sequences [1]. 49 

Even the rock hyrax, Procavia capensis, using no more than five discrete vocal elements, 50 

creates long vocal sequences that are rarely the same on repetition [2]. Thus, even species 51 

with few vocal elements can sometimes generate an apparently unbounded range of possible 52 

combinations. Such varied vocal behaviour raises the question of the role and origin of 53 

complexity in animal vocal communication, and the comparison of vocal complexity across 54 

taxa, including human speech.   55 

Complexity seems easy to identify, but hard to define, and even harder to quantify [3]. 56 

Numerous metrics have been suggested to ascribe a value to the complexity of vocal 57 

repertoires. However, these metrics all rely, either explicitly or implicitly, on assumptions of 58 

the underlying process that generated sets of sequences. For instance, a frequently cited 59 

complexity measurement, Shannon entropy, is only appropriate when each element in a 60 

sequence is produced independently of all other elements (i.e. an independent production 61 

process) although the assumption of independence is rarely tested [4-7]. If vocal sequences 62 

are generated by a non-independent random process, however, Shannon entropy is probably 63 

not suitable for quantifying complexity [8]. Whether vocal sequences are random 64 

independent processes, or conform to some other non-independent stochastic model, 65 
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identifying the process operating is an essential task for quantifying and comparing sequence 66 

properties. 67 

Beyond the application to complexity metrics, uncovering the processes underlying vocal 68 

sequence generation in animals may prove crucial to our understanding of language origins. 69 

Vocal complexity naturally brings to mind human language; however the comparison appears 70 

to be inappropriate. One of the main differences between language and non-human animal 71 

communication is the grammar used to produce sequences. Human language uses "context-72 

free grammars" (CFGs) that are capable of generating recursive sequences and unbounded 73 

correlations [9,10]. In contrast, animal vocal sequences are usually described as “regular 74 

grammars”, the simplest class of formal grammars [11], and many researchers have analysed 75 

animal vocalisations as such (e.g. [12-15]). Regular grammars correspond to Finite State 76 

Automata, because they comprise a set of rules that could instruct a simple machine 77 

(automaton) to move between a (finite) number of well-defined states. In the case of vocal 78 

sequences, each state is an acoustic element. Finite State Automata can be deterministic, for 79 

example syllable ‘A’ is always followed by syllable ‘B’. They can also be probabilistic 80 

(pFSA), in which multiple possible transitions between states are governed by fixed 81 

probabilities; for example, syllable ‘A’ is followed by syllable ‘B’ 90% of the time, and by 82 

syllable ‘C’ 10% of the time. In contrast to deterministic Finite State Automata, different 83 

sequences can be generated each time a pFSA is used. pFSAs are an example of a Markov 84 

chain [16], the most common model used to examine animal vocal sequences [14]. The pFSA 85 

(or Markovian) paradigm assumes that future occurrences (or the probability of each future 86 

occurrence) are entirely determined by a finite number of past occurrences. This property of a 87 

stochastic sequence is known as the Markov property. For example, the probability of the 88 

next syllable in a sequence being of type “A” is determined by the types of the immediately 89 

preceding syllables – or at most some finite number of preceding syllables.  90 
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pFSAs remain popular for characterising animal vocal sequences [11,14], as the mechanism 91 

for producing Markov chains is easily understood, and simple neural mechanisms for 92 

implementing them have been postulated, based on neuroanatomical observations [17,18]. 93 

However, Markov chains are insufficient for producing the complexity of any human 94 

language [9] and there exist grammatical structures that no pFSA can generate, in particular 95 

tree-like syntax such as “the hyrax ate the grass that grew near the rock under the tree” [11]. 96 

Furthermore, no intermediate grammatical form exists between pFSA models, and the CFG 97 

of human language [9]. It is not clear what adaptive force could drive the gradual evolution of 98 

CFGs, in a species that uses only pFSA vocal communication. In computer science, the 99 

addition of register memory, which provides the ability to count the number of repetitions of 100 

a syllable, appears to be a simple transition from regular to context-free automata [19]. 101 

However, such models have not been described in animal communication.  102 

Despite the widespread use and simplicity of pFSA, there are other, non-Markovian 103 

stochastic processes, in particular models where future occurrences are determined by the 104 

(infinite) entirety of preceding events [20]. Non-Markovian processes have been used to 105 

describe (non-vocal) animal behaviour, for instance the renewal process (RP) model in the 106 

reproductive behaviour in sticklebacks, canaries, and Drosophila [21], and the 107 

psychohydraulic model of motivation (PHM) proposed by Konrad Lorenz [22] for basic 108 

drives such as hunger. Although we are not aware of any prior work using non-Markovian 109 

processes to describe vocal behaviour, they seem likely candidates for vocal production. For 110 

example, non-Markovian mechanisms are able to describe both rapid shifts among vocal 111 

elements and long strings of repeated elements. Here we test whether vocal sequences in 112 

several species are more consistent with a Markovian pFSA model, or a non-Markovian 113 

process, such as the RP or PHM. Non-Markovian stochastic processes like the RP have 114 

properties somewhat between the pFSA and the CFG, and the investigation of language 115 
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evolution would not be complete without consideration of other, biologically realistic, 116 

sequence-generating mechanisms.  117 

Both RP and PHM models are considered non-Markovian because they do not rely on finite 118 

memory. In RP models, a particular behaviour (for instance, production of a particular vocal 119 

syllable) is repeated for some probabilistically determined time. Transitions between 120 

syllables of different types are still defined by a transition table as with a pFSA, but the 121 

number of repeats of each syllable in between transitions may be drawn from a distribution, 122 

e.g. Poisson. Although at first surprising, it can be shown that the sequence generated by such 123 

a process is non-Markovian [23], and cannot be well described by a pFSA. The RP does not 124 

fit the Markovian paradigm of finite memory, since the Poisson tail is unbounded. The PHM 125 

also relies on a nominally unbounded memory; in this case the probability of a particular 126 

syllable occurring increases with the time since its last occurrence, and then falls to a 127 

minimum as soon as the syllable is used.  128 

We gathered vocal sequences from seven taxa: the Bengalese finch Lonchura striata 129 

domestica [24], Carolina chickadee Poecile carolinensis [25,26], free-tailed bat Tadarida 130 

brasiliensis [13], rock hyrax Procavia capensis [2], short-finned pilot whale Globicephala 131 

macrorhynchus [27], killer whale Orcinus orca [28], and orangutan Pongo abelii and P. 132 

pygmaeus wurmbii [29]. For comparison with a human sequence corpus, we also analysed 133 

letter-order in a sample of English (the text of the play Hamlet [30]), although the intention 134 

was not to imply that letter-order in human language has any relevance to the evolution of 135 

vocal sequences in animals. These sequences were coded for distinct vocal elements 136 

(syllables) as described in the above-cited previous works. We aimed to match these 137 

sequences to the most likely generation model, from a range of possible models of varying 138 

complexity by testing each species’ sequences against stochastic production from six 139 

different prospective processes: (a) a zero-order Markov process, (b) a first-order Markov 140 
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process, (c) a second-order Markov process, (d) a hidden Markov model, (e) a renewal 141 

process, and (f) a psychohydraulic process.  142 

 143 

2. METHODS 144 

 145 

Description of the stochastic processes 146 

First, we describe each of these processes in detail. Consider a sequence S of n elements 147 

[1…n], taken from a set of C different element types. The zero-order Markov process 148 

(ZOMP) defines a production process where each element is generated according to a fixed 149 

prior probability ππππ, independent of the preceding elements, so that the probability of the n
th
 150 

element Sn being of type i=[1…C] is given by Pr(Sn=i)=πi. In the first-order Markov process 151 

(FOMP), the probability that the n
th
 element will be of type i is determined only by the 152 

preceding element j, and the C x C transition matrix T, which defines the probability that 153 

element i will occur after element j, so that Pr(Sn=i | Sn-1=j)=Tj,i. Similarly, the second-order 154 

Markov process (SOMP) defines the probability of the n
th
 element in terms of the two 155 

preceding elements: Pr(Sn=i | Sn-1=j, Sn-2=k)=U(j,k),i. Note that the size of the second-order 156 

transition matrix U is of size C
2
 x C, which indicates the rapid increase in sample size 157 

required for accurate estimates of the transition probabilities, as the order of a Markov 158 

process increases [31].  159 

The hidden Markov model (HMM) [32] provides a more parsimonious and memory-efficient 160 

representation of higher-order Markov processes, and has been used successfully to capture 161 

the characteristics of vocal sequences from different species, e.g. [24,33]. As with the 162 

traditional Markov models, in generating an HMM sequence, successive elements are chosen 163 
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probabilistically given the current state. Unlike traditional Markov models, though, in the 164 

HMM the states themselves are not explicitly defined in terms of preceding sequences of a 165 

fixed number of elements, but are constructed from the data by an Expectation-Maximisation 166 

optimisation known as the Baum–Welch algorithm [32]. This allows the HMM to represent a 167 

combination of low- and high-order Markov relationships within the same model. 168 

The renewal process (RP) is defined by a first-order transition matrix, which determines the 169 

pFSA transitions between different elements. This matrix R is defined in a similar way to the 170 

FOMP transition matrix T, but with zeroes along the main diagonal. Instead, those self-171 

transitions are generated by a separate stochastic process. In this case, we define the number 172 

of repeated elements as being drawn from a Poisson distribution with mean µ, with a separate 173 

Poisson distribution for each element type i. A graphical description of the differences 174 

between the RP and Markovian processes can be found in [8], and is reproduced in the ESM 175 

(ESM Figure 1). 176 

Although the psychohydraulic model (PHM) has not previously been used to describe animal 177 

communication, it forms a useful counterpoint to the RP. Whereas in a RP model, repeated 178 

elements occur more often than would be expected in a Markov model, in a PHM repeated 179 

elements are less common than expected. We implement a simplified PHM by defining for 180 

each element type i a function of the form ( ) e
ii t

ii tA
κ−

−=1  where ti is the time elapsed since 181 

element i last appeared, ki is an element-specific rate constant, and Ai is the equivalent of 182 

what Lorenz coined the “action-specific energy”, i.e. the driving motivational force that 183 

builds up within an animal until a particular behaviour is precipitated. The probability of the 184 

next element being of type i is then given by ( ) ∑=
i

ii AAiPr . 185 

 186 
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Generation of synthetic sequences 187 

We determined the maximum likelihood estimator parameters for each of the processes, 188 

given the empirical data. For the ZOMP, the parameter ππππ is simply the observed prior 189 

probabilities of each of the element types i. For the FOMP and SOMP, the matrices T and U 190 

are estimated from the number of occurrences of the specific transitions between element 191 

types within the observed sequences.  192 

For the HMM, the parameters of the model are calculated from the empirical data using the 193 

standard Viterbi algorithm [34]. In any HMM implementation, the number of states is a 194 

crucial factor in the model performance, therefore we optimised the number of hidden states 195 

by minimising the Akaike Information Criterion [35]. To do this, we calculated the log 196 

likelihood of generating the training sequence from the trained HMM, and used the number 197 

of hidden states as the number of parameters in the information criterion calculation.  198 

For the RP, the matrix of transitions between different elements R is calculated as for the 199 

FOMP, and the means µµµµ of the repeated element Poisson distributions are estimated from the 200 

empirical distributions of number of repeats, separately for each element type i. For the PHM, 201 

the rate constants κκκκ are also estimated from the empirical distributions of the intervals 202 

between elements of the same type. 203 

Having extracted the maximum likelihood estimator parameters for each model, we used 204 

these to generate artificial sequences based on each model, where the sequence lengths 205 

matched those of the original vocal data sets (Figure 1). An overview of the data set sizes and 206 

sequence lengths is given in Table 1, and the data themselves are available in the ESM 207 

(data.xls). For each species, we generated 200 artificial data sets using each of the model 208 

types. 209 
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 210 

Comparison of artificial and recorded sequences 211 

Determining whether a particular sequence, vocal or otherwise, is Markovian or not is a non-212 

trivial problem. Rigorous tests for finite-state sequences exist [36], but are not easily applied 213 

to data sets of limited size. When limited data are available, transition probabilities are poorly 214 

estimated by the small number of transitions observed. In addition, rare states may be 215 

completely absent. Previous authors have used multiple measures of the statistical properties 216 

of the sequences, such as n-gram distribution [24]. However, these techniques measure 217 

aggregate similarity, and do not directly address the similarity of the individual sequences. 218 

Aggregate comparisons may be an effective way of comparing very long sequences, where 219 

the probability distribution of n-grams would be expected to be limiting. However, they 220 

would be less accurate when comparing short strings such as those found in real recordings, 221 

and when the processes generating these strings may not be stationary (for instance due to 222 

shifting motivational state and responses to external events). We used a more direct method 223 

by comparing each simulated sequence with the corresponding original data, and calculating 224 

the edit (Levenshtein) distance [37] between the pair of sequences. Levenshtein distance 225 

measures the minimum number of insertions, deletions, and replacements necessary to 226 

convert one sequence into another, and has been used for assessing vocal syntax in previous 227 

studies [2,38,39]. This distance gives a measure of dissimilarity between the simulated and 228 

original sequences, which we then averaged over the entire data set. We calculated the 229 

Levenshtein distance between corresponding sequences, both in the simulated and original 230 

data, to generate a pairwise distance matrix. We then repeated this for 200 randomly 231 

generated sequence data sets for each model and each species.  232 
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Having measured the mean Levenshtein distance between a data set and the maximum 233 

likelihood estimator prospective models, we used Multi-Dimensional Scaling [40] to convert 234 

the Levenshtein distance matrix to a series of Cartesian vectors, one for each sequence, which 235 

preserved to the greatest extent possible the pairwise Levenshtein distances between all of the 236 

sequences. The transformation of the distance matrix to a feature-space matrix, allowed us to 237 

use classification algorithms for assigning the simulated data to the most likely model. For 238 

each data set of N sequences, we used the Matlab function cmdscale to convert the N x N 239 

distance matrix to a matrix Y consisting of a series of N vectors of length p, where p<N is the 240 

minimum dimensionality in which the N points can be embedded, i.e. where the pairwise 241 

distances between the points are conserved. We then reduced the dimensionality of each 242 

vector to length q≤p, where q is the number of eigenvalues E of Y·Y' for which E is positive, 243 

and the change in successive eigenvalues ∆E=[E(r)-E(r+1)]/E(r), r=[1…p-1] is greater than 244 

1%.  245 

We used both a naïve Bayesian classifier and a Z-test to determine from which of the six 246 

generation models the original sequences were most likely to have been drawn. The naïve 247 

Bayesian classifier [41] calculated the posterior probabilities of belonging to each of the six 248 

model clusters, in q-dimensional space, given the distribution of the 200 sequences for each 249 

of the six models. The model with the highest posterior probability was chosen as the 250 

candidate model. We then performed an additional Z-test, using the Matlab normfit function, 251 

to compare the mean distance of the original data to 200 simulated samples of the candidate 252 

model. We used a Monte Carlo method to take into account the variation within each model, 253 

and give an estimate of the probability that the observed data were drawn from a distribution 254 

characterised by the 200 simulated samples of the candidate model. Simulated sequences that 255 

are very similar to each other (low variance) are clustered together in distance space, whereas 256 

simulated sequences with a high variance are spread out in distance space (see Figure 2). 257 
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Therefore, any particular empirical data set is more likely to fall within 95% confidence 258 

limits of a high variance model than a low variance one. 259 

Higher order Markov models are, by definition, generalisations of lower order models, and in 260 

particular, the HMM is a generalisation of any arbitrary order Markov model. Therefore, it 261 

might appear that an HMM model must necessarily provide a maximum likelihood estimator 262 

of the model parameters that is at least as accurate as lower order models, if less 263 

parsimonious (having a greater number of model parameters). However, we compared the 264 

original sequences directly to the corpus of generated sequences, so our similarity metric 265 

more broadly measured the appropriateness of each model, and often showed a better fit from 266 

the lower order models (Figure 3). We also performed an Analysis of Variance, and post-hoc 267 

Tukey test, to assess whether the Levenshtein distances between the original sequences and 268 

their corresponding simulated sequences are significantly different among the different 269 

models.  270 

Given that transition probability estimates are likely to be inaccurate for small sample sizes, 271 

we tested the robustness of our conclusions by repeating the analyses using smaller subsets of 272 

the empirical data. We sub-sampled each data set and determined the best-fit model for each 273 

sample size. If the data set in its entirety is of sufficient size to estimate the best-fit model, we 274 

expect that the best-fit model would be consistent between the larger and full sample sizes. 275 

 276 

3. RESULTS 277 

 278 

For the purpose of visualisation, the naïve Bayesian classifier is illustrated in Figure 2 with a 279 

2-dimensional embedding, rather than a full q-dimensional embedding (although the 2-280 
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dimensional embedding is in general insufficient to capture the distribution of the sequences 281 

in Levenshtein distance-space). Figure 2 illustrates the location of the simulated sequences in 282 

distance-space, the location of the original data, and the domains of the classifier. Note that 283 

the spread of the simulated sequences varies substantially between models. For those models 284 

where the simulated sequences are tightly grouped (small Levenshtein distance between 285 

them), the Z-test is more likely to reject the hypothesis that the original data belong to this 286 

model, as the variance of the simulated sequences is small, and the original data are likely to 287 

fall several standard deviations from the mean of the simulated cluster. Figure 3 shows the 288 

results of the Z-test; comparing the distribution of distances within the simulated data set of 289 

the candidate model, and the distance of the original data from the simulated set. Where the 290 

original data distance is far from the intra-model distances, the data are unlikely to have been 291 

drawn from the model. 292 

Table 2 shows the results of the Bayesian classification for each of the eight species 293 

(including English), along with the result of the Z-test for the most likely candidate model. 294 

The Shapiro-Wilk test for normality did not reject a normal distribution for any of the best fit 295 

models, supporting the use of a Z-test. ESM Table 1 shows the results of the Z-tests for all 296 

models. Of the seven non-human species, none show clear Markovian behaviour. The 297 

Bengalese finch, Carolina chickadee, free-tailed bat, pilot whale, and killer whale appear 298 

most similar to the non-Markovian RP, and the Z-test does not reject the RP model (P=0.824, 299 

P=0.989, P=0.764, P=0.586, P=0.646 respectively). The orangutan and the hyrax are most 300 

similar to the Markovian FOMP, but for both of these species the FOMP is a poor fit to the 301 

data, and the vocal sequences are sufficiently different that we reject the null hypothesis of 302 

belonging to that model (orangutan P=0.026, hyrax P<0.001). Letter order in a sample of 303 

English writing appears to follow a Markovian ZOMP model (P=0.914). The PHM did not 304 

appear to be a good model for any of the data sets tested.  305 
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The test of robustness by varying sample size showed that for all data sets used, except the 306 

pilot whale (which passed the Z-test) and the hyrax (which failed the Z-test), the conclusion 307 

of best-fit models was consistent at larger sub-sample sizes (see ESM Figure 2).  308 

 309 

4. DISCUSSION 310 

 311 

Our results show that the vocal sequences of over half of the species studied - the Bengalese 312 

finch, the Carolina chickadee, the free-tailed bat, the pilot whale, and the killer whale - can be 313 

better described as non-Markovian renewal processes, rather than traditional first-order, 314 

second-order, or arbitrary-order hidden Markov models. We cannot reliably identify a 315 

stochastic process generating the sequences of the hyrax or the orangutan, and it would be 316 

interesting to investigate why these vocalisations are qualitatively different from the others 317 

studied, whether because of phylogeny, functionality, or other constraints.  318 

This diversity of production models is quite unexpected, as previous works have 319 

overwhelmingly used the Markovian paradigm as a starting-point for the analysis of animal 320 

vocal sequences [11,14]. Although putative Markovian generation processes are popular, 321 

partly because of their simplicity, and partly because of the clear role that they fill in the 322 

Chomsky hierarchy [9,10], it is inappropriate to assume that they adequately describe the true 323 

generation process, simply because of their utility. Indeed, it seems simplistic to assume that 324 

animals would primarily generate their vocal sequences based solely on a small number of 325 

preceding elements. Renewal processes, in which a certain element is repeated until the 326 

animal is “tired of it” (whether physically, cognitively, or only figuratively), are alternative 327 
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models, and indeed we have shown the RP to be a better approximation for the vocalisations 328 

of most of the species we examined.  329 

Repetition has long been recognised as a feature of animal behaviour, e.g. eventual variety in 330 

birdsong [42], and non-vocal behavioural repetition [21], although the mechanisms 331 

responsible may be diverse [43,44]. Mating and aggressive displays make use of repetition to 332 

augment the magnitude of the display signal [43], and repeated displays appear more 333 

effective in attracting a mate or deterring a rival in species including songbirds [45] and 334 

fallow deer Dama dama [46]. However, a tradeoff must exist between the benefit of signal 335 

repetition, and energetic costs or physiological constraints [45,47]. Such a tradeoff may be a 336 

proximal cause of a non-monotonic distribution of the number of repeats, such as the Poisson 337 

distribution of the proposed renewal process, which appears to be consistent with our 338 

empirical data. 339 

Characterising vocal sequences as Markov chains places animal vocal sequences in the 340 

category of regular grammars, and distinguishes them from the more complex context-free 341 

structure of human language. However, we have shown that the oft-cited conclusion that all 342 

animal communication conforms to regular grammars [11,18] is misleading. Indeed, little 343 

mention has been made in the literature of non-Markovian alternatives to the pFSA grammar. 344 

No attempt has been made until now to test whether animal vocal sequences are indeed most 345 

likely generated by pFSAs, or instead by some other, non-Markovian, stochastic process. It 346 

has been pointed out [48,49] that insufficient attention has been given to the different levels 347 

of complexity in pFSAs of different types (i.e. different orders, vs. HMMs), and we extend 348 

this observation to non-Markovian processes. Claims that certain species such as European 349 

starlings Sturnus vulgaris perceive vocal sequences with a grammar more complex than 350 

regular-grammar, have been met with scepticism [50-52]. However, our findings do not point 351 
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to greater grammatical complexity, but to different grammatical processes, something so far 352 

barely examined in the literature.  353 

For this comparison, we have used a small but diverse set of data. Some of the data sets, such 354 

as the sequences obtained from orangutans, were necessarily rather small because of the 355 

difficulty of working in the wild with an inaccessible, endangered, and semi-solitary species. 356 

The sequences from the pilot whales potentially contained biasing information, since the 357 

audio recorders attached to the animals could also detect the calls of other individuals. 358 

However, such a bias would tend to produce a more independent (ZOMP-like) sequence, 359 

whereas our findings for the pilot whale indicated a low probability of independent 360 

generation. The pilot whale data were also unusual in that they consisted primarily of 361 

stereotyped calls, and few non-stereotyped calls; the occurrence of such sequences is likely 362 

highly context dependent [27]. This could indicate either atypical behaviour or, possibly, 363 

unusually communicative behaviour. We believe that, despite these limitations, inclusion of 364 

these species helps to broaden the scope of our comparison, since primates and cetaceans are 365 

mammalian orders recognised as having particularly sophisticated acoustic communication.  366 

Estimating the parameters of probabilistic models from small sample sizes is necessarily 367 

problematic [53,54]. For example, a FOMP transition table for the English alphabet is a 368 

matrix of size 26 x 26 = 676 cells, and assuming that at least 10 observations are required to 369 

provide a reasonable estimate of each transition probability, then at least 6760 transitions 370 

must be made. In practice, the required number of observations is much more, as some 371 

transitions may be rarely observed. For a SOMP, more than 10
5
 observations are required. In 372 

most cases, our data fall far short of the desirable number of observations. However, 373 

reasonable estimates of model parameters can often be made with surprisingly small sample 374 

sizes [8,54]. The results of our test for robustness show that, with the exception of the pilot 375 

whale data, wherever a clear best-fit model is indicated, the chosen model is consistent 376 
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between larger sub-sample sizes, and we believe that this is an indication of reliability of our 377 

conclusions. 378 

We found that the letter order in the English language is best modelled by a ZOMP, whereas 379 

previous work has indicated that a SOMP is a more appropriate model [55]. However, 380 

English is clearly neither a zero- nor a first-order Markov process, and so the resemblance of 381 

a corpus of English letters to one or the other, may be more dependent on the metric used to 382 

assess similarity, rather than the underlying stochastic processes. Information theoretic 383 

approaches (e.g. [36]) naturally lean toward the second-order Markovian paradigm; for 384 

example, because the letter 't' is so often followed by the letter 'h'. However, we believe that 385 

our approach of comparing the string similarity of sequences generated by putative models, 386 

provides a more useful comparison in the field of animal communication research, although 387 

possibly less useful for analysing human texts. 388 

To the best of our knowledge, no extant species other than humans have a true language, with 389 

an unlimited ability to communicate abstract concepts [56]. Although many non-human 390 

animal species have essential precursor abilities, such as vocal production learning [57], 391 

contextual reference [58-61], and non-semantic syntax [2,27,62], only humans have a 392 

grammatical structure that is sufficiently complex for true linguistic potential [56]. Since no 393 

non-human species demonstrate proto-linguistic grammars, proposed mechanisms for the 394 

evolution of language in humans remain speculative, e.g. [63]. Among theories of language 395 

origin that posit language evolving from systems like extant non-human animal 396 

communication, it is debated whether language arose as a gradual adaptation of simpler vocal 397 

communication systems [64] or gestural systems [65], or whether essential linguistic abilities 398 

arose suddenly or at least very rapidly [11]. Although a conceptual path between regular and 399 

supra-regular grammars is well accepted in the computer science literature [19], an important 400 

question is whether an incremental evolutionary path exists between the pFSA regular 401 
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grammars that heretofore were considered common in animals, and the CFG linguistic 402 

structures that exist in humans. The incremental hypothesis must explain the lack of “proto-403 

languages” in the animal kingdom, representing a link between animal and human linguistic 404 

capabilities [66]. Conversely, saltationary or rapid-evolution hypotheses must provide a 405 

convincing and evolutionarily plausible mechanism that could explain the qualitative gap 406 

between the regular grammar of animal communication and the context-free grammar of 407 

human language. Examples would include metric (timing) features [11], or a synthesis of 408 

multiple regular grammars [63] as a “bridge” between the two capabilities. Recent work has 409 

indicated that complex syntax can develop as the result of simple neurological changes; for 410 

example, in Bengalese finches, which have syntax qualitatively more complex than their wild 411 

ancestors [67]. 412 

Our findings appear to indicate that pFSA is not the ubiquitous nature of animal vocal 413 

sequences, and this requires re-evaluation of both gradual and saltational hypotheses. 414 

Application of our analysis to more species, and the use of more putative non-Markovian 415 

stochastic models, may reveal intermediate steps between known Markovian animal 416 

grammars and human context-free grammars, narrowing the gap between human and non-417 

human animal communicative abilities.  418 

 419 
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FIGURE LEGENDS 572 

 573 

Figure 1. Flow diagram illustrating the calculation of the distance metric between model and 574 

empirical data. Empirical sequences (1) are used to derive maximum likelihood estimator 575 

parameters for each of the models (2). Using these parameters, simulated sequences are 576 

generated (3) and compared to the corresponding original sequences (4). The average edit 577 

distance between these pairs of sequences is a measure of similarity between sequence and 578 

model (5). 579 

 580 

Figure 2. Location of the simulated sequences and original data (black circle) in 2-581 

dimensional Levenshtein distance space. Coloured points indicate only the first 30 randomly 582 

generated sequences from each model, for clarity: ZOMP (red), FOMP (green), SOMP 583 

(blue), HMM (cyan), RP (magenta), and PHM (yellow). Solid colours indicate the domains 584 

of the naïve Bayesian classifier for each model type.  585 

 586 

Figure 3. Histograms of the Levenshtein distances of simulated sequences from each other 587 

(blue bars) for the best fit model (indicated in the title of each panel), and the fitted normal 588 

distribution (green line) using the Matlab normfit function. The red line shows the mean 589 

Levenshtein distance of the original data from the simulated sequences, and the P value 590 

indicates the probability of this mean distance (or greater) having been drawn from the 591 

distribution of simulated sequences (Z-test). 592 

 593 
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Sequences 
AABACCDAABBAC… 
BACCBACBACCAB… 
BABAACCBACCBA… 

0-order Markov process 
(element frequencies p) 

Different processes       and their estimated parameters 

1- & 2- Markov process 
(transition matrix T) 

Hidden Markov model 

Renewal process 
(transition matrix T,  

Poisson mean m) 

AABBBAAAACCBA 
BAACABBACAEBC 
CAAAACABBAAAC 

BBBAABBCAABBC 
ABBBAAAAAACCB 
AAAABAAABACCC 

BCCBAABBCBBBC 
ACBBCBBABABCB 
BCABBCABCCBAA 

BABBCCABBABAC 
CBCBCCBCAABBB 
ABBAABBAAAAAC 

Candidate sequences for each model 

Compare each candidate to original sequence 

Distance 
metric 
(Original 

vs. 
model) 

(1) 

(2) 

(3) 
(4) 

(5) 

Psychohydraulic model 
(decay rate constant k) 

A B C 
Freq 0.2 0.7 0.1 

A B C 
A 0.2 0.7 0.1 
B 0.5 0.1 0.4 
C 0.3 0.2 0.5 

A B C 
Poisson 1.5 4.1 2.3 

A B C 
A 0.2 0.7 0.1 
B 0.5 0.1 0.4 
C 0.3 0.2 0.5 

p = 

T = 

T = m = 

k = 
A B C 

rate 0.14 0.27 0.43 
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Figure 2. Location of the simulated sequences and original data (black circle) in 2-dimensional Levenshtein 
distance space. Coloured points indicate only the first 30 randomly generated sequences from each model, 
for clarity: ZOMP (red), FOMP (green), SOMP (blue), HMM (cyan), RP (magenta), and PHM (yellow). Solid 

colours indicate the domains of the naïve Bayesian classifier for each model type.  
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Figure 3. Histograms of the Levenshtein distances of simulated sequences from each other (blue bars) for 
the best fit model (indicated in the title of each panel), and the fitted normal distribution (green line) using 
the Matlab normfit function. The red line shows the mean Levenshtein distance of the original data from the 
simulated sequences, and the P value indicates the probability of this mean distance (or greater) having 

been drawn from the distribution of simulated sequences (Z-test).  
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Table 1. Summary of the data sets used and their characteristics.  

Species Number 

of element 

types 

Number of 

sequences 

Total sequence 

length 

Source 

Free-tailed bat 

Tadarida brasiliensis 
 

3 71 514 (21) 

Hyrax 

Procavia capensis 
 

5 263 3296 (2) 

Bengalese finch 

Lonchura striata domestica 
 

7 2130 27858 (32) 

Chickadee 

Poecile carolinensis 
 

7 4246 37094 (33, 34) 

Pilot whale 

Globicephala macrorhynchus 
 

20 18 246 (15) 

Orangutan 
Pongo spp. 
 

7 32 373 (31) 

Killer whale 
Orcinus orca 

 

5 8 224 (52) 

English language 25 455 3816 (36) 
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Table 2. Results of the Bayesian classifier to find the best fit model to the observed data. 1 

Embedding dimension shows the number of multidimensional scaling dimensions used for 2 

the classification, and P<0.05 in the final column indicated by (*) shows that the Z-test 3 

rejects the hypothesis that the data belong to the best fit model. 4 

 5 

Species Best fit model Embedding dimension P 

Free-tailed bat RP 5 0.764 

Hyrax FOMP 7 <0.001* 

Bengalese finch RP 7 0.824 

Chickadee RP 8 0.989 

Pilot whale RP 14 0.586 

Orangutan FOMP 9 0.026* 

Killer whale RP 14 0.646 

English ZOMP 6 0.914 

 6 

 7 
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