16 research outputs found

    Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reactive oxygen species generated by hyperglycaemia modify structure and function of lipids, proteins and other molecules taking part in chronic vascular changes in diabetes mellitus (DM). Low activity of scavenger enzymes has been observed in patients with DM. Protective role of scavenger enzymes may be deteriorated by oxidative stress. This study was undertaken to investigate the association between gene polymorphisms of selected antioxidant enzymes and vascular complications of DM.</p> <p>Results</p> <p>Significant differences in allele and genotype distribution among T1DM, T2DM and control persons were found in SOD1 and SOD2 genes but not in CAT gene (p < 0,01). Serum SOD activity was significantly decreased in T1DM and T2DM subjects compared to the control subjects (p < 0,05). SOD1 and SOD2 polymorphisms may affect SOD activity. Serum SOD activity was higher in CC than in TT genotype of SOD2 gene (p < 0,05) and higher in AA than in CC genotype of SOD1 gene (p < 0,05). Better diabetes control was found in patients with CC than with TT genotype of SOD2 gene. Significantly different allele and genotype frequencies of SOD2 gene polymorphism were found among diabetic patients with macroangiopathy and those without it. No difference was associated with microangiopathy in all studied genes.</p> <p>Conclusion</p> <p>The results of our study demonstrate that oxidative stress in DM can be accelerated not only due to increased production of ROS caused by hyperglycaemia but also by reduced ability of antioxidant defense system caused at least partly by SNPs of some scavenger enzymes.</p

    Gene polymorphisms against DNA damage induced by hydrogen peroxide in leukocytes of healthy humans through comet assay: a quasi-experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal cellular metabolism is well established as the source of endogenous reactive oxygen species which account for the background levels of oxidative DNA damage detected in normal tissue. Hydrogen peroxide imposes an oxidative stress condition on cells that can result in DNA damage, leading to mutagenesis and cell death. Several potentially significant genetic variants related to oxidative stress have already been identified, and angiotensin I-converting enzyme (ACE) inhibitors have been reported as possible antioxidant agents that can reduce vascular oxidative stress in cardiovascular events.</p> <p>Methods</p> <p>We investigate the influences of haptoglobin, manganese superoxide dismutase (MnSOD Val9Ala), catalase (CAT -21A/T), glutathione peroxidase 1 (GPx-1 Pro198Leu), ACE (I/D) and gluthatione S-transferases GSTM1 and GSTT1 gene polymorphisms against DNA damage and oxidative stress. These were induced by exposing leukocytes from peripheral blood of healthy humans (N = 135) to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and the effects were tested by comet assay. Blood samples were submitted to genotyping and comet assay (before and after treatment with H<sub>2</sub>O<sub>2 </sub>at 250 μM and 1 mM).</p> <p>Results</p> <p>After treatment with H<sub>2</sub>O<sub>2 </sub>at 250 μM, the GPx-1 polymorphism significantly influenced results of comet assay and a possible association of the Pro/Leu genotype with higher DNA damage was found. The highest or lowest DNA damage also depended on interaction between GPX-1/ACE and Hp/GSTM1T1 polymorphisms when hydrogen peroxide treatment increased oxidative stress.</p> <p>Conclusions</p> <p>The GPx-1 polymorphism and the interactions between GPX-1/ACE and Hp/GSTM1T1 can be determining factors for DNA oxidation provoked by hydrogen peroxide, and thus for higher susceptibility to or protection against oxidative stress suffered by healthy individuals.</p

    Glutathione peroxidase, superoxide dismutase and catalase genotypes and activities and the progression of chronic kidney disease

    No full text
    Background. Oxidative stress has been linked to the progression of disease, including chronic kidney disease (CKD). The aim of the present study was to determine the association between single-nucleotide polymorphisms (SNPs) of the antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase and their activities and the progression of CKD
    corecore