20 research outputs found

    COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures

    Get PDF
    Hydrogen bonds are crucial factors that stabilize a complex ribonucleic acid (RNA) molecule's three-dimensional (3D) structure. Minute conformational changes can result in variations in the hydrogen bond interactions in a particular structure. Furthermore, networks of hydrogen bonds, especially those found in tight clusters, may be important elements in structure stabilization or function and can therefore be regarded as potential tertiary motifs. In this paper, we describe a graph theoretical algorithm implemented as a web server that is able to search for unbroken networks of hydrogen-bonded base interactions and thus provide an accounting of such interactions in RNA 3D structures. This server, COGNAC (COnnection tables Graphs for Nucleic ACids), is also able to compare the hydrogen bond networks between two structures and from such annotations enable the mapping of atomic level differences that may have resulted from conformational changes due to mutations or binding events. The COGNAC server can be accessed at http://mfrlab.org/grafss/cognac

    NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules

    Get PDF
    Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/

    SPRITE and ASSAM: web servers for side chain 3D-motif searching in protein structures

    Get PDF
    Similarities in the 3D patterns of amino acid side chains can provide insights into their function despite the absence of any detectable sequence or fold similarities. Search for protein sites (SPRITE) and amino acid pattern search for substructures and motifs (ASSAM) are graph theoretical programs that can search for 3D amino side chain matches in protein structures, by representing the amino acid side chains as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. Both programs require the input file to be in the PDB format. The objective of using SPRITE is to identify matches of side chains in a query structure to patterns with characterized function. In contrast, a 3D pattern of interest can be searched for existing occurrences in available PDB structures using ASSAM. Both programs are freely accessible without any login requirement. SPRITE is available at http://mfrlab.org/grafss/sprite/while ASSAM can be accessed at http://mfrlab.org/grafss/assam/

    In silico analysis and 3D structure prediction of a chitinase from psychrophilic yeast Glaciozyma antarctica PI12

    Get PDF
    Chitinases are a group of glycosyl hydrolases that are essential to recycle chitin presence in nature. The aim of this work is to characterise the sequence of a chitinase isolated from a psychrophilic yeast, Glaciozyma antarctica PI12 and to predict and analyse the 3-dimensional protein structure. The cDNA for the G. antarctica chitinase gene, GaCHT43, with a length of 1,176 bp was reverse transcribed from mRNA, cloned and sequenced. The gene encodes a mature protein of 391 amino acids with an expected molecular weight of 43 kDa. Sequence analysis showed that GaCh43 has high similarity to the endochitinase family 18 proteins of other fungi. A three-dimensional (3D) model of GaCht43 was built by homology modelling with Aspergillus fumigatus chitinase (1W9P) as the template. Validation analysis via PROCHECK, VERIFY3D and ERRAT showed that the GaCht43 model surpassed the quality requirements and was accepted for further analysis. GaCht43 contained chitinase conserved regions, SxGG and DxxDxDxE that are required in the catalytic mechanism. Analysis of the GaCht43 structure showed the presence of extra loop regions compared to mesophilic chitinases, which might contribute to the flexibility of the protein

    Inflammation in embryology: A review of neuroinflammation in spina bifida

    Get PDF
    The occurrence of neuroinflammation after the failure of neural tube closure, resulting in spina bifida aperta, is well established but whether or not neuroinflammation contributes to damage to the neuroepithelium prior to and during closure is not known. Neuroinflammation may occur at different time periods after perturbation to the developing spinal cord. Evidence suggests that early neuroinflammation is detrimental, whereas the later chronic phase of neuroinflammation may have useful roles. The role of neuroinflammation in neural tube defects is complex. It is important to make the distinction of whether neuroinflammation is important for neuroprotection or detrimental to the neural tissue. This may directly be influenced by the location, magnitude and duration of the insult, as well as the expression of neurotrophic or neurotoxic molecules. The current understanding remains that the chronic damage to the developing spinal cord is likely due to the chemical and mechanical damage of the exposed neural tissue owing to the aggressive intrauterine environment, described as the “two-hit mechanism”. Astrogliosis in the exposed spinal cord has been described in animal models of spina bifida after the failure of closure during embryonic life. Still, its association with neuroinflammatory processes is poorly understood. In this review, we will discuss the current understanding of neuroinflammation in neural tube defects, specifically spina bifida, and highlight inflammation-targeted strategies that may potentially be used to treat this pathophysiological condition

    Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae

    Get PDF
    \ua9 2024 International Union of Crystallography. All rights reserved.The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria

    The Degradome database: mammalian proteases and diseases of proteolysis

    Get PDF
    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes

    An analysis of simple computational strategies to facilitate the design of functional molecular information processors

    Get PDF
    BACKGROUND: Biological macromolecules (DNA, RNA and proteins) are capable of processing physical or chemical inputs to generate outputs that parallel conventional Boolean logical operators. However, the design of functional modules that will enable these macromolecules to operate as synthetic molecular computing devices is challenging. RESULTS: Using three simple heuristics, we designed RNA sensors that can mimic the function of a seven-segment display (SSD). Ten independent and orthogonal sensors representing the numerals 0 to 9 are designed and constructed. Each sensor has its own unique oligonucleotide binding site region that is activated uniquely by a specific input. Each operator was subjected to a stringent in silico filtering. Random sensors were selected and functionally validated via ribozyme self cleavage assays that were visualized via electrophoresis. CONCLUSIONS: By utilising simple permutation and randomisation in the sequence design phase, we have developed functional RNA sensors thus demonstrating that even the simplest of computational methods can greatly aid the design phase for constructing functional molecular devices. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1297-x) contains supplementary material, which is available to authorized users

    The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat

    Get PDF
    Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival
    corecore