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Abstract

Background: Biological macromolecules (DNA, RNA and proteins) are capable of processing physical or chemical
inputs to generate outputs that parallel conventional Boolean logical operators. However, the design of functional
modules that will enable these macromolecules to operate as synthetic molecular computing devices is challenging.

Results: Using three simple heuristics, we designed RNA sensors that can mimic the function of a seven-segment
display (SSD). Ten independent and orthogonal sensors representing the numerals 0 to 9 are designed and
constructed. Each sensor has its own unique oligonucleotide binding site region that is activated uniquely by a
specific input. Each operator was subjected to a stringent in silico filtering. Random sensors were selected and
functionally validated via ribozyme self cleavage assays that were visualized via electrophoresis.

Conclusions: By utilising simple permutation and randomisation in the sequence design phase, we have
developed functional RNA sensors thus demonstrating that even the simplest of computational methods can
greatly aid the design phase for constructing functional molecular devices.

Keywords: Molecular logic circuit, Molecular programming, RNA computing, Molecular computing,
Computational RNA

Background
Following the Ebola outbreak in March 2014 [1, 2], Poje et
al. [3] demonstrated an alternative diagnostic system com-
prising of deoxyribozyme-based logic gates that were able
to detect the presence of nucleic acid sequences from ei-
ther a Marburg or Ebola virus. The system generates a
read-out (in the form of graphical output) using fluo-
rescent characters (i.e., ‘M’ or ‘E’ denoting the presence of
either Marburg and Ebola virus, respectively). This mo-
lecular graphical information processing system uses four
input oligonucleotides representing the four-bit binary-

coded decimal (BCD) values similar to the conventional
electronic seven-segment display (SSD) system [4]. When
input oligonucleotides bind with their respective deoxyri-
bozymes, this binding triggers the separation of single
stranded DNA (ssDNA) from the stem of the deoxyribo-
zyme releasing a product illuminating a fluorescent dye.
The separation of the ssDNA is caused by the self-
cleavage reaction of the deoxyribozyme [5].
The plausibility of adapting this simple mechanism (as

demonstrated by Poje et al. [3]) has been actively investi-
gated [5–7]. Often, the problem of developing these
molecular information processors lies in the complexity
of sequence to structure relationships [8], where the
conformity of the structures is predominantly deter-
mined by the combinatorics of vast sets of sequences.
Therefore, the programmability of the molecular proces-
sors will always be associated with an error margin
much larger than the normal error encountered in
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conventional computers. In most cases, even if the can-
didate sequences passed an "in-silico" filter (i.e., based on
simulated profiles generated from computational tools),
these candidates are still susceptible to errors during the
actual implementation in the laboratory.
The application of RNA molecules as programmable

bio-molecules has been extensively investigated [9–11].
RNA is versatile and its ability to function as natural cat-
alysts [12–14] makes them attractive candidates for devel-
opment as bio-molecular computers [15]. Any system of
nucleic acid machines (hybrids of DNA and RNA mole-
cules) can be fabricated and programmed to perform spe-
cific tasks. These systems can often be broken down into
smaller sub-units that can be constructed individually and
then integrated into a functional system [15, 16] similar to
a conventional computer system comprised of logic boards,
central processing unit (CPU), memory and peripherals.
As we move towards constructing RNA systems that

can perform complex logic (i.e., synonymous to the
central processing unit), our focus shifts towards gener-
ating RNA components that can function as the basic
operators of such a system. Logical operations such as
identification of delivery site or recognition of specific
molecules can be programmed into an RNA component
using these operators. For instance, one can imagine
Poje et al. [3] logical operations embedded into a DNA
structure acting as a carrier with specific functions once
an action has been triggered. This hypothetical biomo-
lecular machine can be a product of integration between
sub-units, which could become the way forward in fabri-
cating functional biomolecular information processors.
The difficulty of designing and developing practical

molecular information processors remains an important
issue in the field. Motivated by the prospect presented
by Poje et al. [3], we investigated the plausibility of de-
signing RNA sensors using simple permutation and ran-
dom substitution algorithms. The objective of this work
was to provide insights into the practicality and com-
plexity of utilising simple heuristics to aid in the design
phase of constructing functional molecular devices.

Methods
Molecular Seven Segment display (SSD) design
Seven-segment display (SSD) is a form of graphical dis-
play in electronic devices that produces a numeral [17].
SSDs can be found in digital clocks, electronic meters,
calculators and other electronic devices that display nu-
meral data. They consist of seven segments with separ-
ate sets of combinatorial logic to switch between an ON
and OFF state for each segment, and create the required
digital output. Each segment of the display is as depicted
in Fig. 1 (a). Liquid crystal display (LCD), light emitting
diode (LED) or any other light generating mechanism is
commonly used as substrates for the SSD.

A standard SSD decoder requires 10 logical states (to
display numerals 0 to 9). Accordingly, we can simplify
the design of our RNA SSD circuit by separating each
state using independent and orthogonal RNA sensors
for each input to represent the numerals. If such logic
can be supported by a number of basic sub-units, then
evidently this logic can be further simplified with a more
complicated unit [3]. We implemented 10 RNA sensors
to mimic the complete logic of the conventional SSD as
illustrated in Fig. 1(b). Conceptually, 15 wells comprising
of a collection of 10 RNA sensors that represent a nu-
merical value of 0 through 9 were used in the system.
Figure 1(c) shows the activation of the sensors based on
Fig. 1(b) to display the numerals 0 through 9.
Penchovsky and Breaker [18] have created a modular

form of four universal logical operators using allosteri-
cally controlled hammerhead ribozymes (i.e., the AND,
OR, YES and NOT Boolean logic gates). These engi-
neered ribozymes are able to demonstrate ligand specifi-
city and were validated successfully in the laboratory.
Each allosterically controlled ribozyme logical operator
has an interchangeable architecture that allows compu-
tational alteration to be made to the oligonucleotide
binding site (OBS) region without altering its unique
allosteric function and conformation. In this work, the
YES-1 gate [18] was selected as a reference model for
our RNA sensor design.
Conventionally, to construct a molecular circuit (i.e.,

molecular array of YES and AND gates [15, 19]), multiple
hammerhead ribozymes are placed in wells according to
their corresponding logic. Each operator has a specific
oligonucleotide input. Upon the presence of their res-
pective input, the self-assembly process between input
oligonucleotide and ribozymes occur, facilitating the con-
formational change that will permit the self-cleavage reac-
tions to happen. The conformation change from inactive
to active state is a representation of an ON value. For
instance, to display the number one (1), only input for
sensor representing numeral 1 will be inputted into each
well. Wells with sensor representing numeral 1 will
undergo catalytic reaction thus effecting a change of state
(from OFF to ON). By combining the wells (correspond-
ing to each segment), the RNA SSD will display the cor-
rect numerals. Thus any mismatch binding (identified as
error) in the wells may lead to the failure of the sensor.

Candidate generation using simple computational
pipeline
The pipeline to generate these candidate sequences com-
prise of two steps: (I) generation of random sequences
using three randomisation strategies and; (II) selection of
candidates using an in silico filtering cascade. The compu-
tational pipeline is straightforward to implement; step I is
executed repeatedly, followed by step II once step I has
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Fig. 1 Conceptual representation of molecular SSD. a presents the segmentation identification of SSD comprising of 10 individual pins, where
each pin can be switched (ON or OFF). Seven of the pins will correlate to the seven LED segments [Refer Additional file for the truth table of the
molecular SSD]. b illustrates the distribution of logic gates per wells. Each circle represents a gate and gates are distributed accordingly into the wells
based on the digits it corresponds to. Wells are labelled as 1 through 15 from left to right and from top to bottom such that the upper left well is
labelled as well 1 and the lower right is labelled as well 15. c is a conceptual representation of a molecular seven-segment character display. Gates in
specific wells will be activated upon binding with its input sequence. For instance, well 1, 2, 3, 6, 9, 12, and well 15 will be activated by the input
sequence represent the numerical digit seven (i.e., activation of gate 7)
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been completed (i.e., generate candidate repeatedly, and
discard the candidate if it does not pass the filter cascade).
Meta-heuristics are not required in the pipeline as the
generation of the candidates can be viewed solely as a re-
petitive cycle (i.e., non-converging).
The three strategies implemented in step I are based on

the dependency diagram [20] of each base position for the
two meta-stable states (inactive and active conformations).
The dependency diagram provides a relational outlook of
each base and allows substitution of bases to be made ac-
cording to the severity of the base pairing interferences in
the two meta-states. Each strategy represents the differ-
ences in severity level of substituting specific regions of the
sequences (from minimal to loose) based on the depend-
ency of each base (to be paired or unpaired; Fig. 2) in the
two meta-states. Note that the mutations that are suggested
by the algorithm must comply with the conformational in-
tegrity indicated in the dependency diagram. Therefore, the
selection of the base positions is restricted to the independ-
ent ("free") position where the bases are predicted to cause
minimal changes to the structural integrity. Only these po-
sitions were selected for the first strategy (9 base positions)
and the second strategy (7 base positions).

Generate random sequences (Step I)
First strategy
Mutations are permitted at nine base positions. Nucleotide
C28, U29, C30, G31, U32, C33, A34, C39 and C46 were

permuted. All possible combinations were generated using
the procedure below (refer Fig. 3a). Because there are only
four nucleobases namely Adenine (A), Uracil (U), Guanine
(G) and Cytosine (C) in the permutation list, there will be
repetitive strings for the candidate sequences, therefore
only unique strings are permitted (i.e., removal of
repetitions). This strategy was considered to be the most
stringent as it only alters non-binding bases and the substi-
tution of bases will only be selected from a list of distinct
permuted strings.

1: Determine the nine bases in OBS that have to be
permuted;

2: Generate the permutation list on the nine positions;
3: Generate all possible combinations of bases;
4: Substitute the bases within the OBS accordingly.

Second strategy
Random generation of strings with 1–7 nucleotides (nt)
in length to be substituted into the following seven posi-
tions (C28, U29, G31, C33, A34, C39 and C46) (refer
Fig. 3b). These random strings were then substituted to
the original OBS of the YES-1 gate at positions 28, 29,
31, 33, 34 and 46 thus elongating the OBS region to be
in the range of 16 to 22 nt.

1: Determine length/number of bases to be substituted
(the length should be between 1 and 7 nt);

Fig. 2 The dependency diagram for YES gate. The colours represent the inter-binding of each base position. These coloured bases are interdependent
where changing one base should change its complementary base in order to retain the secondary structure whereas the white bases indicate that the
base is not complementary or binds to any base position
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Fig. 3 Schematic representation of the three algorithms for logic gate design. a First strategy: the steps to permute nine bases within the OBS YES-1
gate. b Second strategy: the steps to perform random substitutions of seven bases within the OBS YES-1 gate and c Third strategy: substitutions of the
complete OBS YES-1 sequence
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2: Random generation of characters from {C, G, U,
and A} according to the number of bases defined;

3: Generate all possible combinations of bases;
4: Substitute the bases within the OBS accordingly.

Strategy 3
Randomly generated sequences were used to substitute
the OBS region of the YES-1 gate (refer Fig. 3c). The
length of the sequences was in the range of 16 to 22 nt.
As the number of possible combinations of nucleotides
is 4n (where n = 16 to 22), the generation of random se-
quences was restricted to only 15,000 for each length.
The generated sequences then replaced the original OBS
region. This approach liberated the constraints, thus en-
larging the search space to find more plausible solutions
to construct a richer pool of candidate sequences.

1: Randomly generate strings with 16–22 nt bases by
using {C, G, U and A} to substitute the OBS region
of the YES-1 gate;

2: Generate 15,000 random sequences for each length;
3: Combine the upper core sequences of the YES-1

gate (GGGCGACCCUGAUGAGCUUGAGUUU) to
the newly generated OBS sequences and lower core
sequences (AUCAGGCGAAACGGUGAAAGCC
GUAGGUUGCCC) to construct sequences that are
approximately 80 nt in length.

Selection of candidates (Step II)
In step II, computational analysis was conducted to se-
lect plausible candidates according to the filter cascade
recommended for wet-lab validation [18]. The se-
condary structures and minimum free energy (MFE) for
each sequence were calculated using RNAfold [21] with
the Turner 1999 energy model [22] and Turner 2004
energy model [23]. Candidate sequences that do not
fold into an OFF meta-state conformation using direct
secondary structure (dot-bracket) comparison were
eliminated from the pool. A similar procedure was
applied to check the conformation of the candidate
sequences for the ON meta-state conformation. The
dominant structures of the candidate sequences were
determined using dot matrix plots derived from the
partition function calculations [24]. Similarly, noncon-
forming candidates were eliminated. Next, each candi-
date was subjected to a filter cascade following this
criteria:

! Sequence must not have more than four consecutive
identical bases;

! A total of 30 to 70 % of nucleotides in the
oligonucleotide binding site (OBS) must participate
in base pairing interactions in the absence of the
DNA facilitator (input strand);

! The free energy gap between the OFF meta-state
and the ON meta-state must be in the range of -6
to -10 kcal/mol;

! The dominant structures of the ON and OFF
meta-states must be preserved in the range of 20
to 40 °C;

! The ensemble diversity values for both the ON and
OFF meta-states must be less than nine base pairs.

The ensemble diversity indicates the average base pair
distance between RNA suboptimal structures as pre-
dicted by RNAfold [21]. Ideally, the ensemble diversity
values should be minimized. The threshold was set to
less than nine base pairs as suggested by Penchovsky
and Breaker [18]. Additionally, we also considered the
percentage of GC pairing in the OBS region. The num-
ber of G and C bases in the OBS region was counted,
and only candidates with more than 50 % of G and C
base pairs were selected. Base pair formations must be
with other bases outside of the region.
We define V as the penalty value of each candidate se-

quence. The value of each candidate can be calculated
by, V = ∑i = 1

6 (Ci)/6 where Ci is the score of each criterion
as described in Table 1. The value Ci is equal to 1 if a
given sequence satisfies the criterion or 0 otherwise. The
value of V for each sequence is equal to the sum of the
Ci divided by six (i.e., average score of the six filters).
The threshold value for V was set to 0.9 for stringent
quality control. The program RNAsuboptimal [25] was
utilized to verify the presence of both OFF and ON
meta-states using the two energy parameters (Turner
1999 energy model and Turner 2004 energy model) for
each sequence. The free energy folding parameter be-
tween suboptimal conformations was set to 1 kcal/mol.

Protocol for laboratory validation
Oligonucleotides
Synthetic RNAs (Gate) and DNAs (Input) were designed
and modified according to Penchovsky and Breaker [18].
These synthetic RNAs were converted into DNA tem-
plates with the insertion of the T7 promoter sequence at

Table 1 Description of the filter cascade criteria (Ci). The scoring
system to filter the candidates is an average score of six criteria as
listed in the table. Scores are given only if the candidates fulfil the
criterion. Otherwise, a penalty score of 0 will be assigned
Descriptions Score

Having not more than 4 identical consecutive nucleotide C1

Remain inactive state without input oligonucleotide C2

Percentage of OBS participate in base pairing C3

Ensemble diversity for both ON and OFF state C4

Free energies gap between ON and OFF state C5

Percentage of GC pairing in OBS C6
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the 5’ end. The high-performance liquid chromatography
(HPLC) and desalted purified DNA were purchased
from Aitbiotech (Singapore).

Transcription
RNA synthesis was carried out by in vitro transcription
using the MEGAshortscriptTM Kit (Ambion, USA) in a
20 μl final volume according to the manufacturer’s in-
struction. The reaction mixtures consisted of 2 μl T7
10× reaction buffer, 2 μl T7 ATP solution (75 mM),
2 μl T7 CTP solution (75 mM), 2 μl T7 GTP solution
(75 mM), 2 μl T7 UTP solution (75 mM), mixture of
1 μg DNA templates (DNA Gate and T7 promoter),
2 μl T7 enzyme mix, and nuclease free water. The
reaction mixtures were incubated for 4 h at 37 °C in a
Mastercycler® Gradient (Eppendorf, Germany) thermo-
cycler to initiate the transcription reaction. The DNA
templates were then removed from the mix by adding
2.5 μl DNase I (Qiagen, Germany), 10 μl RDD5 and
RNase free water to the final volume of 100 μl for each
sample and incubated at 25 °C for 30 min.

RNA purification
Termination of the reaction and RNA recovery were car-
ried out by alcohol precipitation. 115 μl of nuclease free
water (Ambion, USA) and 15 μl of 3 M sodium acetate
were added into the reaction mixtures and mixed thor-
oughly. Next, two volumes of ethanol were added
(±300 μl), mixed well then chilled at -20 °C for at least
15 min. The RNA was pelleted for recovery by centrifu-
gation at 4 °C for 15 min at 12,000 g using a Microfuge
22R centrifuge (Beckman Coulter). The supernatants
were removed and the RNA pellets were suspended in
OmniPur Water (Calbiochem, USA). The purified RNA
was analysed via electrophoresis in 20 % denaturing
PAGE (0.5 ml of 10× TBE, 2.4 g 8 M urea, 2.5 ml of
40 % acrylamide, nuclease free water, 30 μl of 10 % APS,
3 μl TEMED) in 1× TBE buffer at 50 V and a low
molecular weight DNA ladder (New England Biolabs®
Inc, Massachusetts) was used as a migration distance
reference. The RNA concentration was quantified
using a NanoDrop2000 (Thermo Scientific, USA)
spectrophotometer.

Ribozyme assay
The ribozyme activity assays were performed by mixing
0.1 M Tris-HCl, 1 μM RNA transcript, 6 μM DNA input,
ddH2O and 0.02 μM MgCl2 in 10 μl of total reaction
volume. The reaction mixtures were incubated at 25 °C in
a Mastercycler Gradient (Eppendorf, German) thermocy-
cler for 2 h. The self-cleavage reactions were stopped
using one volume of stop buffer containing loading dye
(bromophenol blue) and 0.5 M Ethylenediaminetetraacetic
acid (EDTA). The samples were denatured at 95 °C for

2 min and the results of the ribozyme reaction were ana-
lysed by electrophoresis in 20 % denaturing polyacryl-
amide gel.

Visualization
The polyacrylamide gel was silver stained in order to
visualize the separation of the RNA molecules. Immedi-
ately after the electrophoresis, the gel was placed into a
container and fixed with 40 % methanol for at least
30 min, followed by the oxidizer for five minutes. A
large volume of sterile water was added to flush the or-
ange stain for a maximum of 15 min. Next, the gel was
immersed in silver reagent for 20 min followed by a
quick water rinse to wash off the left-over silver reagent.
The gel was then immersed developer solution until the
desired intensity of the band was observed and the de-
veloper reaction was stopped by addition of a 5 % acetic
acid solution. The finished gel was viewed and photo-
graphed using an Alpha Imager.

Results and discussion
Analysis of in silico results
The first strategy produced a total of 362,880 sequences.
After the removal of identical sequences, only 1511
unique sequences remained. The step II filtering yielded
only 500 candidates that fulfilled all the criteria. The sec-
ond strategy produced 26,633,664 candidates of which
only 49,849 unique sequences remained after identical
sequences were eliminated. From the 49,849 candidates,
only 5262 candidates passed the step II filter. In the
third strategy, a total of 105,000 sequences were gener-
ated (after the consideration of search space, 15,000
candidates for each length). After step II screening, only
2559 sequences remained. Further analysis was con-
ducted to find overlapping candidates from the three
strategies, however, no identical candidates were found
from the pool of 8321 candidates that progressed past
the step II screen. The distribution of candidates for
each criterion is presented in Fig. 4.
As depicted in Fig. 4, although the third strategy gen-

erated the largest number of candidates, the overall
passing rate of the third strategy is only 2.4 %. In con-
trast, the first strategy (i.e., strict mutation strategy) pro-
duced the highest overall passing rate of 33.1 %, despite
having the least number of candidates. The second strat-
egy has 5262 candidates with the passing rate of 10.5 %.
Of all the criteria, the passing rate is largely dependent
on the ability of candidates to remain in its inactive
secondary structure during initial folding. For instance,
although we successfully generated 105,000 candidates
using the third strategy, only 17,465 (16.6 %) candidates
remained in its inactive secondary structure after initial
folding, causing a significant reduction of the potential
candidates after criterion 1. Candidates from the first

Lee et al. BMC Bioinformatics  (2016) 17:438 Page 7 of 13



strategy performed better with 66.1 %, followed by can-
didates from the second strategy with 34.7 %. This gives
a strong indication that the randomisation of the length
and base combinations in the OBS region plays an
essential role in the formation of a stable OFF state con-
formation. Deviation from the original configuration had
a significant impact on the sensor design.
As a result, it is simple to generate conforming se-

quences when the number of candidates is limited as in-
dicated by the 500 candidates from the first strategy.
However, the limited number of candidates increased
the homogeneity of the sequences which led to the in-
crease of the mispairing probability between each input
and sensor unit. The liberation of the dependency con-
straints fixed this issue as exemplified by the the third
strategy. As a consequence, nonconformity of the candi-
dates increase. Only 2558 successful candidates were ob-
tained from the largest pool of plausible candidates
generated by the third strategy after step II. Followed by
5262 candidates from the second strategy. Further ana-
lysis revealed that the candidates from these two strat-
egies possessed a better mixture of bases combination.
This is an important factor in increasing the potential of
avoiding mispairing, especially when the number of
sensors required for the system increases. Identifying the
trade-offs between conformity and sequence diversity is
key in generating plausible candidates for any type
of sensor.
Analysis of the successful candidates also revealed the

importance of determining key dependent base positions

(conserved bases) previously undiscovered during de-
pendency analysis. Although we permute and randomly
change the nucleotide in the OBS YES-1 gate (in first
strategy and second strategy), the base position N46 can
only be assigned with either base C or U. The presence
of either base G or A at position N46 will immediately
activate the sensor. Therefore, detail anaysis of the infor-
mation generated from the dependency graph is impor-
ant to better guide the randomisation strategy.

Analysis of in vitro validation
Wet laboratory validation was conducted on 10 random
samples selected from each strategy. For the first strat-
egy, the sizes of all sensors were fixed at 80 nt as permu-
tation was limited to only the nine existing base
positions. However, the sizes varied for the second and
third strategies. The selected candidates for the second
strategy comprised of three sensors at 80 nt, two sensors
at 79 nt, two sensors at 78 nt, two sensors at 87 nt and
one remaining sensor at 76 nt. Meanwhile, for third
strategy, we had two sensors at 80 nt, one sensor at 79
nt, one sensor at 78 nt, two sensors at 77 nt, one sensor
at 76 nt, one sensor at 75 nt and two sensors at 74 nt.
The HPLC-purified DNA template lengths were in the
range of between 95 to 100 nt.
The characteristics of the randomly selected sensors

are depicted in Table 2 (for the first strategy), in Table 3
(for the second strategy) and in Table 4 (for the third
strategy). Information regarding the sequences of the
selected sensors is available in the supplementary materials

Fig. 4 The passing rate of candidates for each criterion. Six criteria (not more than three consecutive nucleotides, present in the inactive state,
30–70 % OBS binding, diversity value not more than 9, having energy gap within -6 to -10 kcal/mol and have at least 58 % OBS GC pairing) were
used to select the candidate sequences
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(See Additional file 1: S2: Sequences for candidates from
the second strategy and S3: Sequences for candidates from
the third strategy). Input sequences for the candidates from
the third strategy were excluded due to the non-
conforming structure formation of each sensor during the
transcription process.
Figures 5(a) and (b) depict the self-cleavage activity of

candidate sensors from the first and second strategies re-
spectively. Each sensor was activated by its complemen-
tary input oligonucleotide and remained inactive in the
absence of the input. This is in contrast to Fig. 5(c),
where activation of the sensors occurred without the
presence of the input. Sensors from the third strategy
were unable to fold into an inactive conformation be-
cause the dependent bases remained free (i.e., failed to
form base pairs with the bases in the OBS region). The
random base substitution affecting all bases in the OBS
region failed to function as predicted in step II. During
wet-lab validation, the binding between bases in the
OBS region and the conserved bases were not thermo-
dynamically favourable.

In order to perform the system integration of the sen-
sors, a mismatch profile for all candidates were gener-
ated. A mismatch pairing between the input and OBS
region can cause sensor inactivation and may lead to the
activation of incorrect sensors (i.e., cross-reactivity be-
tween sensors). Using the mismatch profile, we were
able to validate the specificity of each sensor. We added
all effector DNA oligonucleotides (input) to each sensor
and as depicted in Fig. 6a, mispairings were present
across all sensors (candidates from the first strategy).
For several inputs not only did they bind to their

Table 3 Characteristics of the randomly selected YES gates from
the second strategy. The characteristics are similar to Table 1 with
the exception of the base pair distance column. Although the
base positions that are permissible for mutation are localized to
ensure non-interferences of the confirmation, the base pair
distance information is no longer necessary as the size of the
localized region is now random and no longer complies with
the size suggested for the benchmark YES-1 gate (18)
Gate MFE kcal/mol Percentage

of similarity
Percentage of
binding (OBS)

Ensemble
diversity

0 −34.10 94 % 68.75 6.99

1 −31.20 93 % 68.75 6.62

2 −33.40 95 % 68.75 5.98

3 −31.40 93 % 50.00 4.37

4 −33.60 94 % 68.75 6.28

5 −33.10 93 % 68.75 6.08

6 −32.00 91 % 43.75 8.00

7 −31.00 91 % 50.00 4.25

8 −34.30 93 % 68.75 4.40

9 −33.30 91 % 50.00 4.31

Table 2 The characteristics of the randomly selected YES gates
from the first strategy. Gate numbers are from 0 to 9 (10 random
gates). The first column is the minimum free energy (MFE) value of
the candidate as predicted by the program RNAfold. The similarity
percentage between the benchmark YES-1 gate (18) with each
candidate is represented in the next column. This similarity analysis
is localized to only the OBS region (i.e., Bases in the OBS region are
aligned and counted). The percentage of OBS binding is basically
the number of paired bases in the OBS region (based on the
prediction of the meta-stable states that form the inactive
conformation). The dissimilarity between the benchmark structure
(YES-1 in (18)) and the candidates is represented as an average
base pair distance (bpdistance) value calculated using the program
RNAdistance. The base pair distance represents the average number
of mutational steps required for the candidates to form identical
conformation with a given benchmark structure. The ensemble
diversity represents the base pair distances among sub-optimal
structures predicted from the candidate sequences. A lower
ensemble diversity value indicates a more stable conformation
of sequence
Gate MFE

kcal/mol
Percentage of
similarity

Percentage of
binding (OBS)

Base-pair
distance

Ensemble
diversity

0 −36.80 93 59.09 6 7.5

1 −38.30 94 59.09 7 5.18

2 −35.40 94 59.09 8 6.04

3 −36.10 95 59.09 8 8.13

4 −35.60 95 50.00 11 3.87

5 −35.70 96 68.18 8 6.63

6 −37.10 91 59.09 6 4.74

7 −36.30 93 54.55 0 3.51

8 −36.21 94 50.00 9 7.23

9 −37.20 93 63.64 1 2.77

Table 4 Characteristics of the randomly selected YES gates from
the third strategy. The characteristics are similar to Table 1 with
the exception of the base pair distance column. The column is
excluded because the mutations allowed in for candidates in the
third strategy are no longer bound by the constraints previously
imposed in the first and second strategies. The base positions
permissible for mutation are no longer restricted
Gate MFE kcal/mol Percentage

of similarity
Percentage of
binding (OBS)

Ensemble
diversity

0 −34.10 9 % 50 % 4.64

1 −34.90 27 % 50 % 6.4

2 −34.60 23 % 41 % 4.36

3 −34.70 18 % 50 % 5.8

4 −34.80 23 % 47 % 4.69

5 −34.40 36 % 47 % 5.6

6 −33.70 27 % 35 % 5.18

7 −34.60 32 % 38 % 7.34

8 −34.40 27 % 55 % 7.35

9 −35.40 77 % 59 % 6.04
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respective sensors but also to other sensors. As indicated
in the figure, the specificity of input 0 (I0), input 2 (I2),
input 5 (I5), input 6 (I6) and input 7 (I7) are not prefera-
ble due to the higher cross-talk reactions with other
sensors. Accordingly, the self-cleavage activity can be de-
tected in all sensors.
Generally, mismatches occur because of the homogen-

eity of the candidate sequences. For the first strategy,
the sequence similarity percentage is high across the
candidate sequences. This is expected as the generation
of the candidates was achieved by only substituting
(permute) nine base positions within the OBS region
alone. The remaining 71 nucleotides were unchanged,
which is approximately only 11 % of the region for each
candidate. Multiple sequence alignments of the candi-
date sequences revealed that two bases (A and G) occu-
pied this region in the majority of the candidates. By
restricting the nucleotide bases to these nine bases, we
had significantly reduced the specificity between the
candidate sequences resulting in them having a high per-
centage of base combination similarity.
We observed that the rate of mismatches for the

second strategy has been reduced to less than 50 % as
compared to the first strategy (Fig. 6b). The number of

mismatches dropped from 84 mismatches to only 36
mismatches. Among these ten input sequences, input 5
(I5) and input 6 (I6) were the most specific. The I5 will
only activate sensor 2 and its respective sensor, while I6
will only activate sensor 7 and its respective sensor. The
input 9 (I9) had the lowest specificity in being able to
activate six sensors. The remaining inputs were able to
activate three to four other sensors including their re-
spective sensors. When compared to the first strategy,
the substitution region for each candidate is larger
depending on the size of the elongated region (which
varies from 16 to 22 nt). This allows for better diversity
of sequence combinations to be achieved. Multiple se-
quence alignments revealed that an almost equal bases
distribution occurred across all candidates from strategy
two in the region of interest. This also indicated the
availability of better candidates to be selected for valid-
ation from the pool generated by the second strategy.
From the mismatch profile experiment, it is evident

that the specificity factor of the candidate sequences has
to be considered during the design phase. However,
embedding the sophistication of the cross-reactivity ana-
lysis (or inter-dependant base pairing) as a function in
the substitution strategy would greatly increase the

Fig. 5 Profile of ribozyme assays visualized in 10 % denaturing PAGE at 59 V. Gate activity without the complementary input oligonucleotides (-)
and with the presence of complementary input oligonucleotides (+) is showed. The smears beneath each band show immature transcripts of
DNA. This does not influence the self-cleavage reaction. Figure 5 shows the self-cleavage activity for candidates generated by (a) first strategy
(b) second strategy and (c) third strategy
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computational complexity of the heuristic. The complex-
ity would become quadratic, as the heuristic would per-
form pairwise checks for cross-reactivity between all
pairs of gates. On the one hand, as it is, a simple and
crude strategy would not be able to produce sensors
with adequate specificity that can ensure reliable activa-
tion. On the other, the results proved that enriching the
candidate sequences using the simplified strategies is
attainable.
In order to improve the generation of candidates, we

have to thoroughly investigate the structural and sequence
characteristic of the reference model. In this study, the de-
sign of the sensor is solely based on the YES-1 gate [18] to
ensure the functionality of the sensor in the laboratory.
Base substitutions were restricted to preserve the struc-
tural integrity and as a result, the strategy produced
homogenous candidates as revealed in our findings. This
reference model has to be extended to include structural
variations by either elongating non-participating regions
or sequence mutations (i.e., substitution of base pairs in

the non-active regions) to improve the diversity of the
candidates. Enriching the reference model allows for het-
erogeneous candidates to be generated while to a certain
extent preserving the conformational integrity (i.e., good
mixture of conserved and permissible base positions). In
addition, a cross-reactivity filter to check on the base com-
position of the regions of interest should be added to fur-
ther improve on the binding specificity.

Conclusions
The fabrication of functional molecular devices is
synonymous with sophisticated heuristics for designing
candidate sequences, complex inter-molecular reaction
analysis, and excessive laboratory experiments. There
should be a more accessible approach in constructing these
functional devices because of their beneficial potential ap-
plications. Due to the advancement of computers, we are
no longer restricted to a localized search landscape when
generating sequences. The analysis presented in this study
allows for a simple algorithm to be exploited, with the

Fig. 6 Mismatch profile for candidate gates. This figure presents the activity of the gates for the first (a) and second strategy (b) with the insertion of
ten input DNA oligonucleotides that were visualized in 10 % denaturing PAGE at 59 V Input 0 through input 9 were inserted into each well respectively.
Each well depicting double bands indicates the occurrence of cleavage reaction. The highlighted cells represent the gate with its complementary input
sequences. Character ‘X’ indicates mismatches and cells without an “X” indicate no mismatch observed
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potential to create a library of molecular components with-
out many restrictions. This reduces the burden of generat-
ing compatible candidates and allows for better structural
designs as well as more effective functional mechanisms to
be implemented during the design phase.
Smarter heuristics and molecular design schematics

will enable the extensions of this simple approach to
produce better operators thus reducing the complication
of wet-laboratory experimentation normally required in
constructing these devices.

Additional file

Additional file 1: S1. The truth table of seven-segment character display.
Alphabets (a-g) represent the seven segment of SSD. Each of the digits will
be displayed based on the combination of current flows in the seven
segments. S2. Input oligonucleotides (first strategy). Input sequences to
activate the respective sensors generated from the first strategy. S3. Input
oligonucleotides (second strategy). Input sequences to activate the
respective sensors generated from the second strategy. (DOC 44 kb)
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