14 research outputs found
Graphene on Si(111)7x7
We demonstrate that it is possible to mechanically exfoliate graphene under
ultra high vacuum conditions on the atomically well defined surface of single
crystalline silicon. The flakes are several hundred nanometers in lateral size
and their optical contrast is very faint in agreement with calculated data.
Single layer graphene is investigated by Raman mapping. The G and 2D peaks are
shifted and narrowed compared to undoped graphene. With spatially resolved
Kelvin probe measurements we show that this is due to p-type doping with hole
densities of n_h \simeq 6x10^{12} cm^{-2}. The in vacuo preparation technique
presented here should open up new possibilities to influence the properties of
graphene by introducing adsorbates in a controlled way.Comment: 8 pages, 7 figure
Graphene on Si(111)7×7
We demonstrate that it is possible to mechanically exfoliate graphene under ultrahigh vacuum conditions on the atomically well defined surface of single crystalline silicon. The flakes are several hundred nanometers in lateral size and their optical contrast is very faint, in agreement with calculated data. Single-layer graphene is investigated by Raman mapping. The graphene and 2D peaks are shifted and narrowed compared to undoped graphene. With spatially resolved Kelvin probe measurements we show that this is due to p-type doping with hole densities of nh ≃ 6 × 1012 cm−2. The in vacuo preparation technique presented here should open up new possibilities to influence the properties of graphene by introducing adsorbates in a controlled way.DFG, 130170629, SPP 1459: Graphen
Preliminary in vitro assessment of the potential toxicity and antioxidant activity of Ceiba speciosa (A. St.-Hill) Ravenna (Paineira)
ABSTRACT The bark tea of Ceiba speciosa, a tropical tree of the Malvaceae family, is used in the Northwestern Region of Rio Grande do Sul state, Brazil, to reduce blood cholesterol levels. However, there are no scientific data on the efficacy and safety of this plant. The aim of the present study was to evaluate the in vitro antioxidant and toxic potential of bark extracts of C. speciosa. We performed a preliminary phytochemical analysis by high-performance liquid chromatography-diode array detection (HPLC-DAD) and evaluated the oxidative damage to proteins and lipids, the radical scavenging effect, and genotoxicity of the lyophilized aqueous extract (LAECs) and the precipitate obtained from the raw ethanol extract (Cs1). The phytochemical profile demonstrated the presence of phenolic and flavonoid compounds. The LAECs and Cs1 prevented damage to lipids and proteins at concentrations of 50 and 10 µg/mL. They also showed a scavenging effect on 2,2-diphenyl-1-pricril-hydrazyl (DPPH) radicals in a concentration-dependent manner. Furthermore, no genotoxic effect was observed at concentrations of 10, 5 and 2 µg/mL in the Comet assay. The present study is the first evaluation regarding the characterization of C. speciosa and its safety, and the results demonstrate its antioxidant potential and suggest that its therapeutic use may be relatively safe