281 research outputs found

    Automatic computer subprogram selection from application-program libraries - ALTLIB

    Get PDF
    General purpose computer program for access and use of alternate library file with minimum programming effort by user is described. Manner in which program is implemented after determining external requirements is analyzed. Program was developed for use with CDC-6400 computer

    Scheduling divisible loads with time and cost constraints

    Get PDF
    In distributed computing, divisible load theory provides an important system model for allocation of data-intensive computations to processing units working in parallel. The main task is to define how a computation job should be split into parts, to which processors those parts should be allocated and in which sequence. The model is characterized by multiple parameters describing processor availability in time, transfer times of job parts to processors, their computation times and processor usage costs. The main criteria are usually the schedule length and cost minimization. In this paper, we provide the generalized formulation of the problem, combining key features of divisible load models studied in the literature, and prove its NP-hardness even for unrestricted processor availability windows. We formulate a linear program for the version of the problem with a fixed number of processors. For the case with an arbitrary number of processors, we close the gaps in the study of special cases, developing efficient algorithms for single criterion and bicriteria versions of the problem, when transfer times are negligible

    A new technique for infrared scintillation measurements

    Get PDF
    We propose a new technique to measure the infrared scintillation light yield of rare earth (RE) doped crystals by comparing it to near UV-visible scintillation of a calibrated Pr:(Lu0.75_{0.75}Y0.25_{0.25})3_{3}Al5_5O12_{12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to \SI{1700}{nm} of this crystal.Comment: submitted to NIM

    Two-Dimensional Cutting Problem

    Get PDF
    This paper deals with two-dimensional cutting problems. Firstly the complexity of the problem in question is estimated. Then, several known approaches for the regular (rectangular) and irregular (not necessarily rectangular) cutting problems are described. In the second part, a decision support system for cutting a rectangular sheet of material into pieces of arbitrary shapes, is presented. The system uses two earlier described methods which prefer different types of data and the user may decide which one is more suitable for the problem in question. After brief description of system data files and its manual, some experimental results are presented

    SNS programming environment user's guide

    Get PDF
    The computing environment is briefly described for the Supercomputing Network Subsystem (SNS) of the Central Scientific Computing Complex of NASA Langley. The major SNS computers are a CRAY-2, a CRAY Y-MP, a CONVEX C-210, and a CONVEX C-220. The software is described that is common to all of these computers, including: the UNIX operating system, computer graphics, networking utilities, mass storage, and mathematical libraries. Also described is file management, validation, SNS configuration, documentation, and customer services

    Methods for Partitioning Data to Improve Parallel Execution Time for Sorting on Heterogeneous Clusters

    Get PDF
    International audienceThe aim of the paper is to introduce general techniques in order to optimize the parallel execution time of sorting on a distributed architectures with processors of various speeds. Such an application requires a partitioning step. For uniformly related processors (processors speeds are related by a constant factor), we develop a constant time technique for mastering processor load and execution time in an heterogeneous environment and also a technique to deal with unknown cost functions. For non uniformly related processors, we use a technique based on dynamic programming. Most of the time, the solutions are in O(p) (p is the number of processors), independent of the problem size n. Consequently, there is a small overhead regarding the problem we deal with but it is inherently limited by the knowing of time complexity of the portion of code following the partitioning

    BaWO4:Ce Single Crystals Codoped with Na Ions

    Get PDF
    Single crystals of BaWO4, BaWO4:0.5at.%Ce; BaWO4:1at.%Ce; BaWO4:0.5at.%Ce,1at.%Na; and BaWO4:1at.%Ce,2at.%Na were grown from an inductively heated iridium crucible by the Czochralski method on a Malvern MSR4 puller. They were investigated using Electron Paramagnetic Resonance (EPR) spectroscopy at helium temperatures. One isolated center of high (D2d or S4) symmetry was found and two or more other centers of lower symmetry were identified, depending on crystal doping. From the fitting using the EPR-NMR program, the following parameters of g-matrix for the high symmetry center were found: gx = 1.505, gy = 1.505, and gz = 2.731. The linewidth vs. temperature revealed an increasing exponential tendency with increasing temperature. It showed one phonon at the lower temperatures and a Raman + Orbach effect at the higher temperatures. Radioluminescence and pulse height spectra showed rather poor scintillation properties, without any contribution from cerium emission

    Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation

    Full text link
    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the Isobaric Mass Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29^{29}Cl and 30^{30}Ar. The atomic mass of 27^{27}Mg was found to be within 1.6σ\sigma of the value stated in the Atomic Mass Evaluation. The atomic masses of 28,29^{28,29}Mg were measured to be both within 1σ\sigma, while being 8 and 34 times more precise, respectively. Using the 29^{29}Mg mass excess and previous measurements of 29^{29}Cl we uncovered a cubic coefficient of dd = 28(7) keV, which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28^{28}S and the one-neutron separation energy of 29^{29}Cl, which have both come from a single measurement. Finally, our results were compared to ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure

    A deeper insight into (Lu,Y)AG : Pr scintillator crystals

    Get PDF
    Interior of Czochralski-grown (Lu,Y)AG:Pr crystals has been examined by means of several techniques, such as X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, Time-of-Flight Secondary Ion Mass Spectrometry, and magnetic susceptibility measurements. Additionally, their luminescence has been monitored at various combinations of a double-beam (X-ray/IR) excitation
    corecore