122 research outputs found

    Fibrin glue improves osteochondral scaffold fixation: study on the human cadaveric knee exposed to continuous passive motion

    Get PDF
    SummaryObjectiveTo evaluate stability and integrity of bi-layer and three-layer collagen-hydroxyapatite (C-HA) osteochondral scaffolds in a human cadaveric knee exposed to continuous passive motion (CPM) with and without loading and the role of added fibrin glue to improve the press-fit fixation of C-HA scaffolds.DesignOsteochondral lesions (2.0 × 1.5 cm) were chiseled out on both condyles and trochlea in eight human cadaveric knees. A total of 24 bi-layer (5 mm, four in each condyle) or three-layer C-HA scaffolds (8 mm, eight in the trochlea, four in each condyle) were first press-fit implanted and underwent testing with CPM, 90 cycles, 0°–90°. The second set of 24 scaffolds was implanted in cleaned lesions with the addition of fibrin glue. Two knees with fibrin glue fixation were additionally exposed to 15 kg loading, with 30 cycles of CPM, 0°–30°. Then, the knees were reopened and the scaffolds were evaluated using semi-quantitative Drobnic and modified Bekkers scores.ResultsAll but two scaffolds remained in the lesions site throughout CPM. Two implants failed: both were bi-layer osteochondral scaffolds, press-fit implanted at the lateral femoral condyle (LFC). A statistically significant difference was obtained between press-fit and fibrin glue implants with both Drobnic (2.9 ± 0.7 vs 4.3 ± 0.1, P < 0.0005) and Bekkers (3.3 ± 1.0 vs 5.0 ± 0.1, P < 0.0005) scores. Additional knee loading did not affect fibrin glue scaffold fixation or integrity.ConclusionThis cadaveric study showed fibrin glue notably improved bi-layer or three-layer C-HA scaffold press-fit fixation regardless of lesion location. It is therefore recommended that fibrin glue be used during surgery to improve early post-operative C-HA scaffold stability and integrity

    An Output Ripple-Free Fast Charger for Electric Vehicles Based on Grid-Tied Modular Three-Phase Interleaved Converters

    Get PDF
    An off-board dc fast battery charger for electric vehicles (EVs) with an original control strategy aimed to provide ripple-free output current in the typical EV batteries voltage range is presented in this article. The proposed configuration is based on modular three-phase interleaved converters and supplied by the low-voltage ac grid. The ac/dc interleaved three-phase active rectifier is composed of three standard two-level three-phase converter modules with a possibility to slightly adjust the dc-link voltage level in order to null the output current ripple. A modular interleaved dc/dc converter, formed by the same three-phase converter modules connected in parallel, is used as an interface between the dc link and the battery. The use of low-cost, standard and industry-recognized three-phase power modules for high-power fast EV charging stations enables the reduction of capital and maintenance costs of the charging facilities. The effect of coupling on the individual input/output inductors and total input/output current ripples has been investigated as well, considering both possible coupling implementations, i.e., inverse and direct coupling. Numerical simulations are reported to confirm the feasibility and the effectiveness of the whole EV fast charging configuration, including the proposed control strategy aimed to null the ripple of the output current. Experimental results are provided by a reduced scale prototype of the output stage to verify the ripple-free output current operation capability

    Calorie restriction improves physical performance and modulates the antioxidant and inflammatory responses to acute exercise

    Get PDF
    Our aim was to characterize the effects of calorie restriction on the anthropometric characteristics and physical performance of sportsmen and to evaluate the effects of calorie restriction and acute exercise on mitochondria energetics, oxidative stress, and inflammation. Twenty volunteer taekwondo practitioners undertook a calorie restriction of 30-40% on three alternate days a week for one month. Eleven volunteer sportsmen participated as controls. Both groups performed an energy effciency test to evaluate physical performance, and samples were taken before and after exercise. The total weight of participants significantly decreased (5.9%) after calorie restriction, while the effciency of work and the contributions of fat to obtain energy were enhanced by calorie restriction. No significant differences induced by acute exercise were observed in individual non-esterified fatty acid percentage or oxidative stress markers. Calorie restriction downregulated the basal gene expression of nitric oxide synthase, antioxidant enzymes, mitochondrial uncoupling proteins, and repairing stress proteins, but it enhanced the expression of sirtuins in peripheral blood mononuclear cells. In conclusion, one month of calorie restriction decreases body weight and increases physical performance, enhancing energy effciency, moderating the antioxidant and inflammatory basal gene expression, and influencing its response to acute exercise

    Calorie Restriction Improves Physical Performance and Modulates the Antioxidant and Inflammatory Responses to Acute Exercise

    Get PDF
    Our aim was to characterize the effects of calorie restriction on the anthropometric characteristics and physical performance of sportsmen and to evaluate the effects of calorie restriction and acute exercise on mitochondria energetics, oxidative stress, and inflammation. Twenty volunteer taekwondo practitioners undertook a calorie restriction of 30–40% on three alternate days a week for one month. Eleven volunteer sportsmen participated as controls. Both groups performed an energy efficiency test to evaluate physical performance, and samples were taken before and after exercise. The total weight of participants significantly decreased (5.9%) after calorie restriction, while the efficiency of work and the contributions of fat to obtain energy were enhanced by calorie restriction. No significant differences induced by acute exercise were observed in individual non-esterified fatty acid percentage or oxidative stress markers. Calorie restriction downregulated the basal gene expression of nitric oxide synthase, antioxidant enzymes, mitochondrial uncoupling proteins, and repairing stress proteins, but it enhanced the expression of sirtuins in peripheral blood mononuclear cells. In conclusion, one month of calorie restriction decreases body weight and increases physical performance, enhancing energy efficiency, moderating the antioxidant and inflammatory basal gene expression, and influencing its response to acute exercise.This research was funded by Acción Estratégica en Salud del Ministerio de Ciencia e Innovación DPS2008-07033-C03-03, Program of Promotion of Biomedical Research and Health Sciences, Projects 11/01791, Red Predimed-RETIC RD06/0045/1004, CIBEROBN CB12/03/30038, and Balearic Island Government (35/2011 and 23/2012) and FEDER funds. X.C. was funded by a FOLIUM program of Institut d’Investigació Sanitària de les Illes Balears. M.H.L. was founded by APOSTD/2017/023 fellowship from Generalitat Valenciana to APS

    Aerosolized amikacin for treatment of pulmonary Mycobacterium avium infections: an observational case series

    Get PDF
    BACKGROUND: Current systemic therapy for nontuberculous mycobacterial pulmonary infection is limited by poor clinical response rates, drug toxicities and side effects. The addition of aerosolized amikacin to standard oral therapy for nontuberculous mycobacterial pulmonary infection may improve treatment efficacy without producing systemic toxicity. This study was undertaken to assess the safety, tolerability and preliminary clinical benefits of the addition of aerosolized amikacin to a standard macrolide-based oral treatment regimen. CASE PRESENTATIONS: Six HIV-negative patients with Mycobacterium avium intracellulare pulmonary infections who had failed standard therapy were administered aerosolized amikacin at 15 mg/kg daily in addition to standard multi-drug macrolide-based oral therapy. Patients were monitored clinically and serial sputum cultures were obtained to assess response to therapy. Symptomatic improvement with radiographic stabilization and eradication of mycobacterium from sputum were considered markers of success. Of the six patients treated with daily aerosolized amikacin, five responded to therapy. All of the responders achieved symptomatic improvement and four were sputum culture negative after 6 months of therapy. Two patients became re-infected with Mycobacterium avium intracellulare after 7 and 21 months of treatment. One of the responders who was initially diagnosed with Mycobacterium avium intracellulare became sputum culture positive for Mycobacterium chelonae resistant to amikacin after being on intermittent therapy for 4 years. One patient had progressive respiratory failure and died despite additional therapy. There was no evidence of nephrotoxicity or ototoxicity associated with therapy. CONCLUSION: Aerosolized delivery of amikacin is a promising adjunct to standard therapy for pulmonary nontuberculous mycobacterial infections. Larger prospective trials are needed to define its optimal role in therapy of this disease

    An ex vivo continuous passive motion model in a porcine knee for assessing primary stability of cell-free collagen gel plugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS<sup>®</sup>-1S).</p> <p>Methods</p> <p>A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS<sup>®</sup>-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS<sup>®</sup>-1S surface was evaluated with image processing software.</p> <p>Results</p> <p>Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS<sup>®</sup>-1S with an empty defect site was recorded.</p> <p>Conclusion</p> <p>The ex vivo CPM animal model is appropriate in investigating CaReS<sup>®</sup>-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects.</p

    Effect of Acute Exposure to Moderate Altitude on Muscle Power: Hypobaric Hypoxia vs. Normobaric Hypoxia

    Get PDF
    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (~3%) and maximal strength (1RM) (~6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press.This study has been supported by a Grant from the Ministry of education, culture and Sport of Spain, Reference 14/UPB10/07

    Exercise-induced bronchoconstriction and atopy in Tunisian athletes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study is a cross sectional analysis, aiming to evaluate if atopy is as a risk factor for exercise induced bronchoconstriction (EIB) among Tunisian athletes.</p> <p>Methods</p> <p>Atopy was defined by a skin prick test result and EIB was defined as a decrease of at least 15% in forced expiratory volume in one second (FEV1) after 8-min running at 80–85% HRmaxTheo. The study population was composed of 326 athletes (age: 20.8 ± 2.7 yrs – mean ± SD; 138 women and 188 men) of whom 107 were elite athletes.</p> <p>Results</p> <p>Atopy was found in 26.9% (88/326) of the athletes. Post exercise spirometry revealed the presence of EIB in 9.8% of the athletes including 13% of the elite athletes. Frequency of atopy in athletes with EIB was significantly higher than in athletes without EIB [62.5% vs 23.1%, respectively].</p> <p>Conclusion</p> <p>This study showed that atopic Tunisian athletes presented a higher risk of developing exercise induced bronchoconstriction than non-atopic athletes.</p
    • …
    corecore