127 research outputs found

    Identification of two novel mutations in CDHR1 in consanguineous Spanish families with autosomal recessive retinal dystrophy.

    Get PDF
    Inherited retinal dystrophies present extensive phenotypic and genetic heterogeneity, posing a challenge for patients' molecular and clinical diagnoses. In this study, we wanted to clinically characterize and investigate the molecular etiology of an atypical form of autosomal recessive retinal dystrophy in two consanguineous Spanish families. Affected members of the respective families exhibited an array of clinical features including reduced visual acuity, photophobia, defective color vision, reduced or absent ERG responses, macular atrophy and pigmentary deposits in the peripheral retina. Genetic investigation included autozygosity mapping coupled with exome sequencing in the first family, whereas autozygome-guided candidate gene screening was performed by means of Sanger DNA sequencing in the second family. Our approach revealed nucleotide changes in CDHR1; a homozygous missense variant (c.1720C > G, p.P574A) and a homozygous single base transition (c.1485 + 2T > C) affecting the canonical 5' splice site of intron 13, respectively. Both changes co-segregated with the disease and were absent among cohorts of unrelated control individuals. To date, only five mutations in CDHR1 have been identified, all resulting in premature stop codons leading to mRNA nonsense mediated decay. Our work reports two previously unidentified homozygous mutations in CDHR1 further expanding the mutational spectrum of this gene

    Physicians’ misperceived cardiovascular risk and therapeutic inertia as determinants of low LDL-cholesterol targets achievement in diabetes

    Get PDF
    Background: Greater efforts are needed to overcome the worldwide reported low achievement of LDL-c targets. This survey aimed to dissect whether and how the physician-based evaluation of patients with diabetes is associated with the achievement of LDL-c targets. Methods: This cross-sectional self-reported survey interviewed physicians working in 67 outpatient services in Italy, collecting records on 2844 patients with diabetes. Each physician reported a median of 47 records (IQR 42–49) and, for each of them, the physician specified its perceived cardiovascular risk, LDL-c targets, and the suggested refinement in lipid-lowering-treatment (LLT). These physician-based evaluations were then compared to recommendations from EAS/EASD guidelines. Results: Collected records were mostly from patients with type 2 diabetes (94%), at very-high (72%) or high-cardiovascular risk (27%). Physician-based assessments of cardiovascular risk and of LDL-c targets, as compared to guidelines recommendation, were misclassified in 34.7% of the records. The misperceived assessment was significantly higher among females and those on primary prevention and was associated with 67% lower odds of achieving guidelines-recommended LDL-c targets (OR 0.33, p < 0.0001). Peripheral artery disease, target organ damage and LLT-initiated by primary-care-physicians were all factors associated with therapeutic-inertia (i.e., lower than expected probability of receiving high-intensity LLT). Physician-suggested LLT refinement was inadequate in 24% of overall records and increased to 38% among subjects on primary prevention and with misclassified cardiovascular risk. Conclusions: This survey highlights the need to improve the physicians’ misperceived cardiovascular risk and therapeutic inertia in patients with diabetes to successfully implement guidelines recommendations into everyday clinical practice

    Prognostic value of p27(Kip1 )expression in Basaloid Squamous Cell Carcinoma of the larynx

    Get PDF
    BACKGROUND: Very few reports have investigated the role of cell cycle regulators as biomarkers in Basaloid Squamous Cell Carcinoma (BSCC) of the larynx, a definite morphologic, uncommon, very aggressive variant of squamous cell carcinoma. Lower expression of Ki67/Mib-1, a proliferation marker highly expressed in the majority of tumours, and p53, a tumour suppressor protein that can induce an arrest of the G1-S transition, was related to a better prognosis in laryngeal BSCC. In the head and neck, p27(kip1), a member of the Cip1/Kip1 family of cyclin-dependent kinase inhibitors, has emerged as an independent prognostic factor, able to identify low-expressing tumours with unfavourable course. Up to date the role of this protein was never studied in BSCC. Aim of our study was to investigate the potential prognostic value of p27(kip1 )levels and their correlation with Ki67/Mib-1 and p53 expression in BSCC of the larynx. METHODS: The retrospective study group consisted of 15 male and 1 female patients, affected by laryngeal BSCC, ranging in age from 44 to 69 years (mean 58). The tumour originated from the supraglottis in thirtheen cases and from the glottis in the remaining three. Ten patients had metastatic cervical lymph nodes at presentation and were classified as N+. Post surgical stage was IV in four patients, III in nine, II in two cases and I in the remaining one. Follow-up ranged from a minimum of 5 months up to 9 years. Paraffin-embedded tissue sections of each laryngeal tumour were analyzed for p27(kip), Ki67/Mib-1 and p53 expression by immunohistochemistry. RESULTS: The immunohistochemical study showed p27(kip1 )expression in 40% of the patients with no evidence of disease (NED) and in none (0%) of the patients dead of disease (DOD), whilst p53 was expressed in 60% of patients in NED status and in 90% of patients in DOD status. Ki67/Mib-1 was positive in 80% of NED patients and in 100% of DOD patients. At multivariate analysis, performed by means of Discriminant analysis, low levels of p27(kip1 )expression significantly correlated with poor prognosis (P < 0.05). CONCLUSION: p27(kip1 )protein has been shown to be a significant independent prognostic factor in laryngeal SCC. In our series of laryngeal BSCC the resulting data seem to confirm the clinical prognostic relevance of p27(kip1 )low expression, which directly correlated with biological aggressiveness and consequent shortened survival

    Abnormal Changes in NKT Cells, the IGF-1 Axis, and Liver Pathology in an Animal Model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN) in the spinal cord, and is associated with local neuroinflammation. Circulating CD4+ T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1) mouse model of ALS, the levels of natural killer T (NKT) cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF)-1 decreased, while the expression of IGF binding protein (IGFBP)-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer), in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic treatments aimed at reducing oxidative stress

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease

    Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays

    Get PDF
    The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian Consensus Conference on Pain in Neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    Insulin-like growth factor-1 deficiency and metabolic syndrome

    Full text link
    corecore