45 research outputs found

    Bibliometric Analysis of Psychomotricity Research Trends: The Current Role of Childhood

    Get PDF
    Psychomotricity is a wide broad term, which encompasses different bodily action approaches to support children and adolescents to achieve their highest potential. A search on the Web of Science (WoS) Core Collection database was performed on this topic, using traditional bibliometric laws. Finally, 118 publications (112 articles and 6 reviews) documents were found. Annual publications presented an exponentially growing trend (R2 = 84.7%). Spain was the most productive country/region worldwide. Paola Magioncalda, Matteo Martino y Víctor Arufe Giraldez were highlighted as the most prolific co-authors. “Retos Nuevas Tendencias en Educación Física, Deporte y Recreación” was the most productive journal and the “International Journal of Environmental Research and Public Health”, was the second most productive; the third in the list was the most productive in the JCR ranking. Thus, research on psychomotricity is experiencing exponential growth, causing this topic to generate great interest among researchers, publishers and journals. The most cited paper was “Neurocognitive Effects of Alcohol Hangover”. The author keywords that were first raised together with psychomotricity were related to rehabilitation and psychomotor development, while the current trend was focused on physical activity and early childhood education

    Generalizations of Gronwall-Bihari Inequalities on Time Scales

    Full text link
    We establish some nonlinear integral inequalities for functions defined on a time scale. The results extend some previous Gronwall and Bihari type inequalities on time scales. Some examples of time scales for which our results can be applied are provided. An application to the qualitative analysis of a nonlinear dynamic equation is discussed.Comment: This is a preprint of an article accepted (16/May/2008) for publication in the "Journal of Difference Equations and Applications"; J. Difference Equ. Appl. is available online at http://www.informaworld.co

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presented. ISSN:0029-5515 ISSN:1741-432

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F
    corecore