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Abstract
Motivated by (Kyoung and Yong-Hoon in Sci. China Math. 53:967-984, 2010) and
(Chen and Zhang in Sci. China Math. 54:959-972, 2011), this paper is concerned with
a boundary value problem of singular second-order differential systems with
quasi-Laplacian operators on the whole line. By constructing a completely
continuous nonlinear operator and using a fixed point theorem, sufficient conditions
guaranteeing the existence of at least one unbounded solution are established. The
methods used are standard, however, their exposition in the framework of such a kind
of problems is new and skillful. Three concrete examples are given to illustrate the
main theorem.
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1 Introduction
As is well known, various problems arising in heat conduction [, ], chemical engineer-
ing [], underground water flow [], thermo-elasticity [], and plasma physics [] can be
reduced to the nonlocal problems with integral boundary conditions.

Boundary value problems for second-order differential equations with integral bound-
ary conditions constitute a very interesting and important class of problems. They include
as special cases two-, three-, multi-point and nonlocal boundary value problems [–] as
special cases. For such problems and comments on their importance, we refer the reader
to [–] and [], and the references therein.

The theory of boundary value problems on the whole line for differential equations or
integral equations arises in different areas on applied mathematics and physics. Since an
infinite interval is noncompact, the study of boundary value problems on the whole line
is more complicated, especially for boundary value problems with integral boundary con-
ditions on the whole line, not many work was done in the literature (see [–] and the
references therein). Furthermore, most of the results above are in the scalar case.

Differential equations governed by nonlinear differential operators have been widely
studied. In this setting the most investigated operator is the classical p-Laplacian, that
is, �p(x) = |x|p–x with p > , which, in recent years, has been generalized to other types
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of differential operators that preserve the monotonicity of the p-Laplacian but are not ho-
mogeneous. These more general operators, which are usually referred to as �-Laplacians
(or quasi-Laplacians or quasi-Laplacian operators), are involved in some models, e.g. in
non-Newtonian fluid theory, diffusion of flows in porous media, nonlinear elasticity and
theory of capillary surfaces. The related nonlinear differential equation has the form

[
�

(
x′)]′ = f

(
t, x, x′), t ∈ (–∞, +∞),

where � : R → R is an increasing homeomorphism such that �() = . More recently,
equations involving other types of differential operators have been studied from a differ-
ent point of view arising from other types of models, e.g. reaction diffusion equations with
non-constant diffusivity and porous media equations. This leads to consider nonlinear dif-
ferential operators of the type [a(t, x, x′)�(x′)]′, where a is a positive continuous function.
For a comprehensive bibliography on this subject, see e.g. [, ] and [, ].

The systems of second-order ordinary differential equations arise from many fields in
physics and chemistry. For example in the theory of nonlinear diffusion generated by non-
linear sources, in thermal ignition of gases and in concentration in chemical or biological
problems; see [–] and the references therein.

In [, ], the authors studied the existence, nonexistence, and multiplicity of positive
solutions of two-point boundary value problems on finite intervals for second-order or-
dinary differential p-Laplacian systems with parameters. To get the solutions, the upper
and lower solution method, the fundamental properties of the fixed point index, and the
fixed point index theorem were used.

The asymptotic theory of ordinary differential equations is an area in which there is
great activity among a large number of investigators. In this theory, it is of great interest to
investigate, in particular, the existence of solutions with prescribed asymptotic behavior,
which are global in the sense that they are solutions on the whole line (half line). The
existence of global solutions with prescribed asymptotic behavior is usually formulated as
the existence of solutions of boundary value problems on the whole line (half line).

In [], authors studied the solvability of the resonant second-order boundary value
problems with the one-dimensional p-Laplacian at resonance on a half line

(
c(t)φp

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
,  < t < ∞,

x() =
n∑

i=

μix(ξi), lim
t→+∞ c(t)φp

(
x′(t)

)
= 

and

(
c(t)φp

(
x′(t)

))′ + g(t)h
(
t, x(t), x′(t)

)
= ,  < t < +∞,

x() =
∫ +∞


g(s)x(s) ds, lim

t→+∞ c(t)φp
(
x′(t)

)
= ,

with multi-point and integral boundary conditions, respectively, where φp(s) = |s|p–s,
p > ,

∑m
s= μix(ξi) = ,

∫ +∞
 g(s) ds = . The arguments are based upon an extension of

Mawhin’s continuation theorem due to Ge and Ren []. In [–], authors studied
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the existence of solutions or positive solutions of boundary value problems of differen-
tial equations with p-Laplacian on half lines.

In recent paper [], the author considered the existence of solutions of the following
boundary value problem for a second-order singular differential equation on the whole
line:

[
�

(
ρ(t)a

(
t, x(t), x′(t)

)
x′(t)

)]′ + f
(
t, x(t), x′(t)

)
= , t ∈ R,

lim
t→–∞ρ(t)a

(
t, x(t), x′(t)

)
x′(t) –

∫ +∞

–∞
α(s)x(s) ds =

∫ +∞

–∞
g
(
s, x(s), x′(s)

)
ds,

lim
t→+∞ρ(t)a

(
t, x(t), x′(t)

)
x′(t) +

∫ +∞

–∞
β(s)x′(s) ds =

∫ +∞

–∞
h
(
s, x(s), x′(s)

)
ds,

where ρ ∈ C(R, [, +∞)) with ρ(t) >  for all t �=  satisfies

∫ 

–∞


ρ(s)
ds = +∞,

∫ +∞




ρ(s)

ds = +∞,

a : R × R × R → (, +∞) is continuous, and there exist constants m > , M >  such that

m ≤ a
(

t,
(
 + τ (t)

)
x,

y
ρ(t)

)
≤ M, t ∈ R, x ∈ R, y ∈ R

and for each r > , |x|, |y| ≤ r imply that a(t, ( + τ (t))x, y
ρ(t) ) → a±∞ uniformly as t → ±∞,

where τ (t) = | ∫ t


ds
ρ(s) |, α,β : R → [, +∞) are continuous functions satisfying

∫ +∞

–∞
α(s) ds > ,

∫ +∞


α(s)

∫ s



dr
ρ(r)

ds < +∞,

∫ 

–∞
α(s)

∫ 

s

dr
ρ(r)

ds < +∞,
∫ +∞

–∞
β(s)
ρ(s)

ds < +∞,

f , g , h defined on R are nonnegative Carathéodory functions, � ∈ C(R) is continuous
and strictly increasing on R, �() =  and its inverse function denoted by �– is contin-
uous too, moreover, for �– there exist constants L >  and Ln >  such that �–(xx) ≤
L�–(x)�–(x) and

�–(x + · · · + xn) ≤ Ln
[
�–(x) + · · · + �–(xn)

]
, xi ≥  (i = , , . . . , n).

In [], the authors investigated the existence and multiplicity of nonnegative solutions
for the following integral boundary value problem on the whole line:

(
p(t)x′(t)

)′ + λq(t)f
(
t, x(t), x′(t)

)
= , t ∈ R,

a lim
t→–∞ x(t) – b lim

t→–∞ p(t)x′(t) =
∫ ∞

–∞
ψ(s)g

(
s, x(s), x′(s)

)
ds,

a lim
t→+∞ x(t) + b lim

t→+∞ p(t)x′(t) =
∫ ∞

–∞
ψ(s)g

(
s, x(s), x′(s)

)
ds,

where λ >  is a parameter, f , g, g ∈ C(R × [,∞) × R, [,∞)), q,ψ ∈ C(R, (,∞)), and
p ∈ C(R, (,∞)) ∩ C(R). Here, the values of

∫ +∞
–∞ gi(s, x(s), x′(s)) ds (i = , ),

∫ +∞
–∞

ds
p(s) ,
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and sups∈R ψ(s) are finite and a + a > , bi >  (i = , ) satisfying D = ab + ab +
aa

∫ +∞
–∞

ds
p(s) > .

On the one hand, to the best of our knowledge, there have been no papers concerned
with the existence of unbounded solutions of boundary value problems of singular second-
order differential systems with quasi-Laplacian operators [] on the whole lines.

On the other hand, in all above mentioned papers, the boundary conditions are posed at
the two end points  and +∞ (or –∞ and +∞) and the solutions obtained are defined on
[, +∞) (or R). An interesting question occurs: when one subjects the boundary conditions
on one end point –∞ and a intermediate point , how could one get solutions defined on
R of a boundary value problem of differential equations on the whole line?

Motivated by [, , ] and the reason mentioned above, we consider the following
boundary value problem for the singular second-order differential system on the whole
line with quasi-Laplacian operators:

[
�

(
ρ(t)a

(
t, x(t), x′(t)

)
x′(t)

)]′ + f
(
t, y(t), y′(t)

)
= , t ∈ R,

[
�

(
�(t)b

(
t, y(t), y′(t)

)
y′(t)

)]′ + g
(
t, x(t), x′(t)

)
= , t ∈ R,

(.)

subject to the integral boundary conditions

x(ξ ) =
∫ +∞

–∞
φ
(
s, y(s), y′(s)

)
ds,

lim
t→–∞ρ(t)x′(t) =

∫ +∞

–∞
ϕ
(
s, y(s), y′(s)

)
ds,

y(η) =
∫ +∞

–∞
χ

(
s, x(s), x′(s)

)
ds,

lim
t→–∞�(t)y′(t) =

∫ +∞

–∞
ψ

(
s, x(s), x′(s)

)
ds,

(.)

where
(a) ρ,� ∈ C(R, (,∞)) are continuous on R and satisfy

∫ 

–∞


ρ(s)
ds = +∞,

∫ +∞




ρ(s)

ds = +∞,

∫ 

–∞


�(s)
ds = +∞,

∫ +∞




�(s)

ds = +∞;

(b) a, b : R × R × R → (, +∞) are continuous and satisfy

lim
t→±∞ a

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)
= a± > ,

lim
t→±∞ b

(
t,

(
 + σ (t)

)
u,

v
�(t)

)
= b± > 

uniformly for u, v in each bounded interval, there exist constants mi > , Mi > 
such that

m ≤ a
(

t,
(
 + τ (t)

)
u,

v
ρ(t)

)
≤ M,

m ≤ b
(

t,
(
 + σ (t)

)
u,

v
�(t)

)
≤ M, t ∈ R, u, v ∈ R,
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and both

(u, v) → a
(

t,
(
 + τ (t)

)
u,

v
ρ(t)

)
and (u, v) → b

(
t,

(
 + σ (t)

)
u,

v
�(t)

)

are uniformly continuous for t ∈ R, where τ (t) = | ∫ t
ξ


ρ(s) ds| and σ (t) = | ∫ t

η


�(s) ds|;
(c) �, � are quasi-Laplacian operators (Definition . in Section ), the inverse

operators of �,� are denoted by �– and �–, respectively, the supporting
functions (Definition . in Section ) of � and �– are denoted by ω and ν,
respectively, the supporting functions of � and �– by ω and ν;

(d) f defined on R is a σ -Carathéodory function, g defined on R is a τ -Carathéodory
functions (Definitions . and . in Section );

(e) φ, ϕ defined on R are σ -Carathéodory functions, χ , ψ defined on R

τ -Carathéodory functions;
(f ) ξ ,η ∈ R are fixed constants.
The purpose of this paper is to establish sufficient conditions for the existence of at least

one unbounded solution of BVP (.)-(.).
This paper may be the first one to establish existence results for such a kind of problems.

Compared to previous results, our work has the following new features.
Firstly, our study is on singular nonlinear differential systems (f , g , φ, ϕ, ρ , �, χ , and ψ

may be singular). The nonnegative functions ρ , � satisfy the assumption (a), however, the
assumptions

∫ +∞
–∞

du
ρ(u) < +∞ and

∫ +∞
–∞

du
�(u) < +∞ are made in [, , –, –].

Secondly, this paper generalizes the boundary value problems on finite intervals dis-
cussed in [, ] to ones on the whole lines, the main tools used in this paper is the
well-known Schauder fixed point theorem (not the upper and lower solution method, the
fundamental properties of the fixed point index, and the fixed point index theorem used
in [, ]).

Thirdly, a completely continuous operator is constructed, and a special Banach space has
been developed to overcome the difficulties due to the singularity and to the application
of the fixed point theorem.

Fourthly, we generalize the boundary value problems of differential equations on finite
interval discussed in [, ] to one in whole lines. By comparing with [], the nonlinear
differential operators [�(ρ(t)a(t, x(t), x′(t))x′(t))]′ and [�(�(t)b(t, y(t), y′(t))y′(t))]′ are more
general. In [], the authors studied the boundary value problem

ẍ = f (t, x, ẋ), x(–∞) = x(+∞), ẋ(–∞) = ẋ(+∞).

Under adequate hypotheses and using the Bohnenblust-Karlin fixed point theorem for
multivalued mappings, the existence of solutions was established. However, the Banach
space

X :=
{

x ∈ C(R) : (∃)x(±∞), (∃)ẋ(±∞)
}

was used in []. In our paper, the Banach space

X =
{

x : x, x′ ∈ C(R), lim
t→±∞

x(t)
 + τ (t)

and lim
t→±∞ρ(t)x′(t) exist

}

is used; see Claim . and Claim . in Section .
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Finally, we discuss the boundary value problem with integral boundary conditions,
that is, system (.) including three-point, multi-point and nonlocal boundary value
problems as special cases and the quasi-Laplacian terms [�(ρ(t)a(t, x(t))x′(t))]′ and
[�(�(t)b(t, y(t))y′(t))]′ are involved. In (.)-(.), the boundary conditions are posed at
the points ξ , η, and –∞ and the solution obtained are defined on R.

By an unbounded solution of BVP (.)-(.) we mean a pair of functions (x, y) ∈ C(R)
such that

[
�

(
ρax′)]′ : t → [

�
(
ρ(t)a

(
t, x(t), x′(t)

)
x′(t)

)]′,
[
�

(
�by′)]′ : t → [

�
(
�(t)b

(
t, y(t), y′(t)

)
y′(t)

)]′

belong to L(R), and x, y satisfy the prescribed asymptotic behavior, i.e., the following lim-
its:

lim
t→±∞

x(t)
 + τ (t)

, lim
t→±∞

y(t)
 + σ (t)

, lim
t→±∞ρ(t)x′(t), lim

t→±∞�(t)y′(t)

exist and all equations in (.)-(.) are satisfied.
The remainder of this paper is organized as follows: the preliminary results are given

in Section , the main results are presented in Section . Three examples to illustrate the
main theorem are given in Section .

2 Preliminary results
In this section, we present some background definitions in Banach spaces and state an
important fixed point theorem. The preliminary results are given too.

Definition . [] An odd homeomorphism � of the real line R onto itself is called a
quasi-Laplacian operator if there exists a homeomorphism ω of [, +∞) onto itself which
supports � in the sense that for all v, v ≥  we have

�(vv) ≥ ω(v)�(v). (.)

ω is called the supporting function of �.

Remark . Note that any function of the form

�(u) :=
k∑

j=

cj|u|ju, u ∈ R,

is a quasi-Laplacian operator, provided that cj ≥ . Here a supporting function is defined
by ω(u) := min{uk+, u}, u ≥ .

Remark . It is clear that a quasi-Laplacian operator � and any corresponding support-
ing function ω are increasing functions vanishing at zero; moreover, their inverses �–

and ν , respectively, are increasing and such that

�–(ww) ≤ ν(w)�–(w) (.)

for all w, w ≥ , and ν is called the supporting function of �–.



Yang and Liu Boundary Value Problems  (2015) 2015:42 Page 7 of 39

Remark . It is well known that �(s) = |s|p–s with p >  is called p-Laplacian. One sees
that a quasi-Laplacian operator contains a p-Laplacian as a special case.

Definition . G : R × R × R → R is called a τ -Carathéodory function if it satisfies:
(i) t → G(t, ( + τ (t))u, 

ρ(t) v) is measurable for any u, v ∈ R;
(ii) (u, v) → G(t, ( + τ (t))u, 

ρ(t) v) is continuous for a.e. t ∈ R;
(iii) for each r > , there exists a nonnegative function φr ∈ L(R) such that |u|, |v| ≤ r

implies

∣
∣∣
∣G

(
t,

(
 + τ (t)

)
u,


ρ(t)

v
)∣

∣∣
∣ ≤ φr(t), a.e. t ∈ R.

Definition . H : R × R × R → R is called a σ -Carathédory function if it satisfies:
(i) t → H(t, ( + σ (t))u, 

�(t) v) is measurable for any u, v ∈ R;
(ii) (u, v) → H(t, ( + σ (t))u, 

�(t) v) is continuous for a.e. t ∈ R;
(iii) for each r > , there exists a nonnegative function φr ∈ L(R) such that |u|, |v| ≤ r

implies

∣
∣∣∣H

(
t,

(
 + σ (t)

)
u,


�(t)

v
)∣

∣∣∣ ≤ φr(t), a.e. t ∈ R.

Let C(R) be the set of all continuous functions on R. Define

X =
{

x : R → R : x, x′ ∈ C(R), lim
t→±∞

x(t)
 + τ (t)

and lim
t→±∞ρ(t)x′(t) exist

}
.

For x ∈ X, define

‖x‖ = ‖x‖X = max

{
sup
t∈R

|x(t)|
 + τ (t)

, sup
t∈R

ρ(t)
∣∣x′(t)

∣∣
}

, x ∈ X.

Claim . X is a Banach space with the norm ‖ · ‖ defined.

Proof In fact, we see easily that X is a normed linear space. Let {xu} be a Cauchy sequence
in X. Then it follows that

xu, x′
u ∈ C(R), lim

t→±∞
xu(t)

 + τ (t)
, lim

t→±∞ρ(t)x′
u(t) exist, u ∈ N ,

‖xu – xv‖ = max

{
sup
t∈R

|xu(t) – xv(t)|
 + τ (t)

, sup
t∈R

ρ(t)
∣
∣x′

u(t) – x′
v(t)

∣
∣
}

→ , u, v → +∞.
(.)

Thus there exist two functions x and y defined on R such that

lim
u→+∞

xu(t)
 + τ (t)

= x(t), lim
u→+∞ρ(t)x′

u(t) = y(t), t ∈ R. (.)

Denote z(t) = ( + τ (t))x(t) and w(t) = y(t)
ρ(t) for t ∈ R. This means that the functions

z : R → R are well defined.
Step . Prove that z, w ∈ C(R).
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For any t ∈ R, we find that

∣
∣z(t) – z(t)

∣
∣ =

∣
∣( + τ (t)

)
x(t) –

(
 + τ (t)

)
x(t)

∣
∣

≤ ∣
∣( + τ (t)

)
x(t) – xu(t)

∣
∣ +

∣
∣xu(t) – xu(t)

∣
∣

+
∣
∣xu(t) –

(
 + τ (t)

)
x(t)

∣
∣

=
(
 + τ (t)

)
∣∣
∣∣

xu(t)
 + τ (t)

– x(t)
∣∣
∣∣ +

∣
∣xu(t) – xu(t)

∣
∣

+
(
 + τ (t)

)
∣∣
∣∣

xu(t)
 + τ (t)

– x(t)
∣∣
∣∣.

From (.) and (.) we see that limt→t z(t) = z(t). Then z is continuous at t = t. So
z ∈ C(R). Similarly we can prove that w ∈ C(R).

Step . Prove that the limits limt→±∞ z(t)
+τ (t) and limt→±∞ ρ(t)w(t) exist.

From (.), we get

∣
∣∣
∣ lim
t→±∞

xu(t)
 + τ (t)

– lim
t→±∞

xv(t)
 + τ (t)

∣
∣∣
∣ → , u, v → +∞,

∣
∣∣ lim
t→±∞ρ(t)x′

u(t) – lim
t→±∞ρ(t)x′

v(t)
∣
∣∣ → , u, v → +∞.

It follows that {limt→±∞ xu(t)
+τ (t) } and {limt→±∞ ρ(t)x′

u(t)} are Cauchy sequences. So both
limu→+∞ limt→±∞ xu(t)

+τ (t) and limu→+∞ limt→±∞ ρ(t)x′
u(t) exist. Then (.) implies that

lim
t→±∞

z(t)
 + τ (t)

= lim
t→±∞ x(t) = lim

t→±∞ lim
u→+∞

xu(t)
 + τ (t)

= lim
u→+∞ lim

t→±∞
xu(t)

 + τ (t)

exists. Similarly we can prove that limt→±∞ ρ(t)w(t) exists.
Step . Prove that w(t) = z′

(t) for all t ∈ R.
For t ∈ R, there exists a constant cu ∈ R such that

∣∣
∣∣xu(t) – cu –

∫ t


w(s) ds

∣∣
∣∣ =

∣∣
∣∣

∫ t



[
x′

u(s) – w(s)
]

ds
∣∣
∣∣

≤
∣
∣∣
∣

∫ t




ρ(s)

∣∣ρ(s)x′
u(s) – ρ(s)w(s)

∣∣ds
∣
∣∣
∣

≤
∣∣
∣∣

∫ t



ds
ρ(s)

∣∣
∣∣ sup

t∈R

∣
∣ρ(t)x′

u(t) – y(t)
∣
∣ →  as u → +∞.

So limu→+∞ xu(t) – cu =
∫ t

 w(s) ds. Then there exists c ∈ R such that ( + τ (t))x(t) – c =
∫ t

 w(s) ds. So w′
(t) = z(t).

Step . Prove that xu → x as u → +∞ in X.
We have by (.) and (.)

‖xu – x‖ = max

{
sup
t∈R

|xu(t) – x(t)|
 + τ (t)

, sup
t∈R

ρ(t)
∣∣x′

u(t) – x′
(t)

∣∣
}

→  as u → +∞.

From the above discussion, we see that x ∈ X with xu → x as u → +∞. It follows that X
is a Banach space. �
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Claim . Let M be a subset of X. Then M is relatively compact if and only if the following
conditions are satisfied:

(i) both {t → x(t)
+τ (t) : x ∈ M} and {t → ρ(t)x′(t) : x ∈ M} are uniformly bounded;

(ii) both {t → x(t)
+τ (t) : x ∈ M} and {t → ρ(t)x′(t) : x ∈ M} are equicontinuous in any

subinterval [a, b] ⊂ R;
(iii) both {t → x(t)

+τ (t) : x ∈ M} and {t → ρ(t)x′(t) : x ∈ M} are equiconvergent as s → ±∞.

Proof ⇐ From Claim ., we know X is a Banach space. In order to prove that the subset
M is relatively compact in X, we only need to show M is totally bounded in X, that is, for
all ε > , M has a finite ε-net.

For any given ε > , by (i)-(iii), there exist constants A > , δ > , an integer N > , we
have

∣∣
∣∣

x(t)
 + τ (t)

–
x(t)

 + τ (t)

∣∣
∣∣,

∣
∣ρ(t)x′(t) – ρ(t)x′(t)

∣
∣ ≤ ε


,

t, t ≤ –N or t, t ≥ N , x ∈ M,

‖x‖ = max

{
sup
t∈R

|x(t)|
 + τ (t)

, sup
t∈R

ρ(t)
∣∣x′(t)

∣∣
}

≤ A, x ∈ M,

∣
∣∣
∣

x(t)
 + τ (t)

–
x(t)

 + τ (t)

∣
∣∣
∣,

∣∣ρ(t)x′(t) – ρ(t)x′(t)
∣∣ ≤ ε


,

t, t ∈ [–N , N], |t – t| < δ, x ∈ M.

Define X|[–N ,N] = {x|[–N ,N] : x ∈ X}. For x ∈ X|[–N ,N], define

‖x‖N = max

{
sup

t∈[–N ,N]

|x(t)|
 + τ (t)

, sup
t∈[–N ,N]

ρ(t)
∣∣x′(t)

∣∣
}

.

Similarly to Claim ., we can prove that X[–N ,N] is a Banach space with the norm ‖ · ‖N .
Let M|[–N ,N] = {t → x(t), t ∈ [–N , N] : x ∈ M}. Then M|[–N ,N] is a subset of X|[–N ,N]. By

Ascoli-Arzela theorem, we can know that M|[–N ,N] is relatively compact in X|[–N ,N]. Thus,
there exist x, x, . . . , xk ∈ M such that, for any x ∈ M, we find that there exists some i =
, , . . . , k such that

‖x – xi‖N = max

{
sup

t∈[–N ,N]

|x(t) – xi(t)|
 + τ (t)

, sup
t∈[–N ,N]

ρ(t)
∣∣x′(t) – x′

i(t)
∣∣
}

≤ ε


.

Therefore, for x ∈ M, we find that

‖x – xi‖X = max

{
sup
t∈R

|x(t) – xi(t)|
 + τ (t)

, sup
t∈R

ρ(t)
∣∣x′(t) – x′

i(t)
∣∣
}

≤ max

{
sup

t≤–N

|x(t) – xi(t)|
 + τ (t)

, sup
t≤–N

ρ(t)
∣∣x′(t) – x′

i(t)
∣∣,

sup
|t|≤N

|x(t) – xi(t)|
 + τ (t)

, sup
|t|≤N

ρ(t)
∣∣x′(t) – x′

i(t)
∣∣,

sup
t≥N

|x(t) – xi(t)|
 + τ (t)

, sup
t≥N

ρ(t)
∣∣x′(t) – x′

i(t)
∣∣
}
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≤ max

{
sup

t≤–N

|x(t) – xi(t)|
 + τ (t)

, sup
t≤–N

ρ(t)
∣
∣x′(t) – x′

i(t)
∣
∣,

ε


,

sup
t≥N

|x(t) – xi(t)|
 + τ (t)

, sup
t≥N

ρ(t)
∣∣x′(t) – x′

i(t)
∣∣
}

.

We find that

sup
t≤–N

|x(t) – xi(t)|
 + τ (t)

≤ sup
t≤–N

∣
∣∣
∣

x(t)
 + τ (t)

–
x(–N)

 + τ (–N)

∣
∣∣
∣

+
∣∣
∣∣

x(–N)
 + τ (–N)

–
xi(–N)

 + τ (–N)

∣∣
∣∣

+ sup
t≤–N

∣∣
∣∣

xi(–N)
 + τ (–N)

–
xi(t)

 + τ (t)

∣∣
∣∣

≤ ε


+

ε


+

ε


= ε.

Similarly we can prove that supt≤–N ρ(t)|x′(t) – x′
i(t)| ≤ ε, supt≥N

|x(t)–xi(t)|
+τ (t) ≤ ε,

supt≥N ρ(t)|x′(t) – x′
i(t)| ≤ ε.

So, for any ε > , M has a finite ε-net {Ux , Ux , . . . , Uxk }, that is, M is totally bounded
in X. Hence M is relatively compact in X.

⇒ Assume that M is relatively compact, then for any ε > , there exists a finite ε-net
of M. Let the finite ε-net be {Ux , Ux , . . . , Uxk } with xi ⊂ M. Then for any x ∈ M, there
exists Uxi such that x ∈ Uxi and

‖x‖ ≤ ‖x – xi‖ + ‖xi‖ ≤ ε + max
{‖xi‖ : i = , , . . . , k

}
.

It follows that {‖x‖ : x ∈ M} is uniformly bounded. Then (i) holds.
Let [–N , N] be any subinterval in R. Then there exists δ >  such that

∣∣
∣∣

xi(t)
 + τ (t)

–
xi(t)

 + τ (t)

∣∣
∣∣ < ε

for all t, t ∈ [–N , N] with |t – t| < δ and i = , , . . . , k. For x ∈ M, there exists an i such
that x ∈ Uxi . Then we have for t, t ∈ [–N , N] with |t – t| < δ that

∣∣
∣∣

x(t)
 + τ (t)

–
x(t)

 + τ (t)

∣∣
∣∣ ≤

∣∣
∣∣

x(t)
 + τ (t)

–
xi(t)

 + τ (t)

∣∣
∣∣ +

∣∣
∣∣

xi(t)
 + τ (t)

–
xi(t)

 + τ (t)

∣∣
∣∣

+
∣∣
∣∣

xi(t)
 + τ (t)

–
x(t)

 + τ (t)

∣∣
∣∣

≤ ε.

{t → x(t)
+τ (t) : x ∈ M} is equicontinuous in [–N , N]. Similarly we can prove that {t →

ρ(t)x′(t) : x ∈ M} is equicontinuous in [–N , N]. It follows that (ii) holds.
Now we prove that (iii) holds. It is easily seen that there exists N >  such that

∣∣
∣∣

xi(t)
 + τ (t)

–
xi(t)

 + τ (t)

∣∣
∣∣ < ε
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for all t, t ≤ –N , i = , , . . . , k. For x ∈ M, there exists i such that x ∈ Uxi . So

∣
∣∣
∣

x(t)
 + τ (t)

–
x(t)

 + τ (t)

∣
∣∣
∣ ≤

∣
∣∣
∣

x(t)
 + τ (t)

–
xi(t)

 + τ (t)

∣
∣∣
∣ +

∣
∣∣
∣

xi(t)
 + τ (t)

–
xi(t)

 + τ (t)

∣
∣∣
∣

+
∣∣
∣∣

xi(t)
 + τ (t)

–
x(t)

 + τ (t)

∣∣
∣∣

≤ ε, t, t ≤ –N .

Then limt→–∞ x(t)
+τ (t) exists. Similarly we can prove that limt→+∞ x(t)

+τ (t) , limt→–∞ ρ(t)x′(t),
and limt→+∞ ρ(t)x′(t) exist. Hence (iii) holds. Consequently, the claim is proved. �

Define

Y =
{

y : R → R : y, y′ ∈ C(R), lim
t→±∞

y(t)
 + σ (t)

and lim
t→±∞�(t)y′(t) exist

}
.

For y ∈ Y , define the norm of y by

‖y‖ = ‖y‖Y = max

{
sup
t∈R

|y(t)|
 + σ (t)

, sup
t∈R

�(t)
∣
∣y′(t)

∣
∣
}

.

One can prove that Y is a Banach space with the norm ‖y‖ for y ∈ Y .
Define E = X × Y with the norm

∥∥(x, y)
∥∥ = max

{‖x‖,‖y‖} for (x, y) ∈ E.

One can prove that E is a Banach space.
Define the linear operator T by (T(x, y))(t) = ((T(x, y))(t), (T(x, y))(t)) with

(
T(x, y)

)
(t) =

∫ +∞

–∞
φ
(
s, y(s), y′(s)

)
ds

+
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ s

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds,

(x, y) ∈ E,

(
T(x, y)

)
(t) =

∫ +∞

–∞
χ

(
s, x(s), x′(s)

)
ds

+
∫ t

η

�–(�(b–
∫ +∞

–∞ ψ(w, x(w), x′(w)) dw) –
∫ s

–∞ g(w, x(w), x′(w)) dw)
�(s)b(s, y(s), y′(s))

ds,

(x, y) ∈ E.

Lemma . Suppose that (a)-(f) hold. Then T : E → E is well defined, (x, y) ∈ E is a solution
of BVP (.)-(.) if and only if (x, y) ∈ E is a fixed point of T and is completely continuous.

Proof We divide the proof into three steps:
Step . Prove that T : E → E is well defined.
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For (x, y) ∈ E, we know that there is constant r >  such that ‖x‖ ≤ r. By (d) and (e), we
know that there is φr ∈ L(R) such that

∣∣f
(
t, y(t), y′(t)

)∣∣ =
∣
∣∣
∣f

(
t,

(
 + σ (t)

) y(t)
 + σ (t)

,


�(t)
�(t)y′(t)

)∣
∣∣
∣ ≤ φr(t),

∣
∣g

(
t, x(t), x′(t)

)∣∣ =
∣∣
∣∣g

(
t,

(
 + τ (t)

) x(t)
 + τ (t)

,


ρ(t)
ρ(t)x′(t)

)∣∣
∣∣ ≤ φr(t),

∣
∣φ

(
t, y(t), y′(t)

)∣∣ =
∣∣
∣∣φ

(
t,

(
 + σ (t)

) y(t)
 + σ (t)

,


�(t)
�(t)y′(t)

)∣∣
∣∣ ≤ φr(t),

∣∣ϕ
(
t, y(t), y′(t)

)∣∣ =
∣
∣∣∣ϕ

(
t,

(
 + σ (t)

) y(t)
 + σ (t)

,


�(t)
�(t)y′(t)

)∣
∣∣∣ ≤ φr(t),

∣∣χ
(
t, x(t), x′(t)

)∣∣ =
∣
∣∣
∣χ

(
t,

(
 + τ (t)

) x(t)
 + τ (t)

,


ρ(t)
ρ(t)x′(t)

)∣
∣∣
∣ ≤ φr(t),

∣∣ψ
(
t, x(t), x′(t)

)∣∣ =
∣∣∣
∣ψ

(
t,

(
 + τ (t)

) x(t)
 + τ (t)

,


ρ(t)
ρ(t)x′(t)

)∣∣∣
∣ ≤ φr(t).

(.)

By (b), we get

a
(
t, x(t), x′(t)

)
=

∣∣
∣∣a

(
t,

(
 + τ (t)

) x(t)
 + τ (t)

,


ρ(t)
ρ(t)x′(t)

)∣∣
∣∣ ∈ [m, M],

b
(
t, y(t), y′(t)

)
=

∣
∣∣∣b

(
t,

(
 + σ (t)

) y(t)
 + σ (t)

,


�(t)
�(t)y′(t)

)∣
∣∣∣ ∈ [m, M],

lim
t→±∞ a

(
t, x(t), x′(t)

)
= lim

t→±∞ a
(

t,
(
 + τ (t)

) x(t)
 + τ (t)

,


ρ(t)
ρ(t)x′(t)

)
= a±,

lim
t→±∞ b

(
t, y(t), y′(t)

)
= lim

t→±∞ b
(

t,
(
 + σ (t)

) y(t)
 + σ (t)

,


�(t)
�(t)y′(t)

)
= b±.

(.)

Hence the following integrals are convergent:

∫ +∞

–∞
φ
(
s, y(s), y′(s)

)
ds,

∫ +∞

–∞
χ

(
s, x(s), x′(s)

)
ds,

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw,

∫ +∞

–∞
ψ

(
w, y(w), y′(w)

)
dw,

∫ s

–∞
f
(
w, y(w), y′(w)

)
dw,

∫ s

–∞
g
(
w, x(w), x′(w)

)
dw.

So (T(x, y)) ∈ C(R) and we get by using L’Hôpital’s rule

lim
t→±∞

(T(x, y))(t)
 + τ (t)

= lim
t→±∞


 + τ (t)

∫ +∞

–∞
φ
(
s, y(s), y′(s)

)
ds + lim

t→±∞


 + τ (t)

×
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ s

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds

= lim
t→±∞


 + τ (t)



Yang and Liu Boundary Value Problems  (2015) 2015:42 Page 13 of 39

×
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ s

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds

= ±�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ t

–∞ f (w, y(w), y′(w)) dw)
a(t, x(t), x′(t))

=

⎧
⎨

⎩

–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw,
�–(�(a–

∫ +∞
–∞ ϕ(w,y(w),y′(w)) dw)–

∫ +∞
–∞ f (w,y(w),y′(w)) dw)

a+
.

One sees that

ρ(t)
(
T(x, y)

)′(t) =
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ t
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))
.

Similarly we can prove that t → ρ(t)(T(x, y))′(t) is continuous on R and

lim
t→±ρ(t)

(
T(x, y)

)′(t) =

⎧
⎨

⎩

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw,

�–(�(a–
∫ +∞

–∞ ϕ(w,y(w),y′(w)) dw)–
∫ +∞

–∞ f (w,y(w),y′(w)) dw)
a+

.

Hence T(x, y) ∈ X. Similarly we can show that T(x, y) ∈ Y . Then T : E → E is well defined.
Step . It is easy to show that (x, y) ∈ E is a solution of BVP (.)-(.) if and only if

(x, y) ∈ E is a fixed point of T . We omit the details.
Step . Prove that T is completely continuous.
Firstly, we prove that T is continuous, i.e., both T and T are continuous. Let (xn, yn) ∈ E

(n = , , , . . .) and (xn, yn) → (x, y) as n → ∞. We have

lim
n→∞ sup

t∈R


 + τ (t)

∣∣xn(t) – x(t)
∣∣ = ,

lim
n→∞ sup

t∈R
ρ(t)

∣∣x′
n(t) – x′

(t)
∣∣ = ,

lim
n→∞ sup

t∈R


 + σ (t)

∣∣yn(t) – y(t)
∣∣ = ,

lim
n→∞ sup

t∈R
�(t)

∣∣y′
n(t) – y′

(t)
∣∣ = .

(.)

We will prove that

(
T(xn, yn), T(xn, yn)

) → (
T(x, y), T(x, y)

)
, n → ∞. (.)

It is easy to see that there exists r >  such that

|xn(t)|
 + τ (t)

, sup
t∈R

ρ(t)
∣∣x′

n(t)
∣∣, sup

t∈R

|yn(t)|
 + σ (t)

, sup
t∈R

�(t)
∣∣y′

n(t)
∣∣ ≤ r, t ∈ R.

By (b), (d), and (e), we know that there is φr ∈ L(R) such that (.) and (.) hold with
x = xn.

Denote

M = �–
(

�

(
a–

∫ +∞

–∞
φr(w) dw

)
+

∫ +∞

–∞
φr(w) dw

)
.
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Now we get by using (.) and (.)

ρ(t)
∣
∣(T(xn, yn)

)′(t) –
(
T(x, y)

)′(t)
∣
∣

=
∣
∣∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, yn(w), y′

n(w)) dw) –
∫ t

–∞ f (w, yn(w), y′
n(w)) dw)

a(t, xn(t), x′
n(t))

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′

(w)) dw) –
∫ t

–∞ f (w, y(w), y′
(w)) dw)

a(t, x(t), x′
(t))

∣
∣∣
∣

≤ 
m

∣
∣∣
∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

–
∫ t

–∞
f
(
w, yn(w), y′

n(w)
)

dw
)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)

–
∫ t

–∞
f
(
w, y(w), y′

(w)
)

dw
)∣∣

∣∣

+
∣∣
∣∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)

–
∫ t

–∞
f
(
w, y(w), y′

(w)
)

dw
)∣∣

∣∣

×
∣∣
∣∣


a(t, xn(t), x′

n(t))
–


a(t, x(t), x′

(t))

∣∣
∣∣

≤ 
m

∣∣
∣∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

–
∫ t

–∞
f
(
w, yn(w), y′

n(w)
)

dw
)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)

–
∫ t

–∞
f
(
w, y(w), y′

(w)
)

dw
)∣

∣∣
∣

+ �–
(

�

(
a–

∫ +∞

–∞
φr(w) dw

)
+

∫ +∞

–∞
φr(w) dw

)

× 
m



∣∣a
(
t, xn(t), x′

n(t)
)

– a
(
t, x(t), x′

(t)
)∣∣

≤ 
m

∣∣
∣∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

–
∫ t

–∞
f
(
w, yn(w), y′

n(w)
)

dw
)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)

–
∫ t

–∞
f
(
w, y(w), y′

(w)
)

dw
)∣∣∣

∣

+
M
m



∣∣a
(
t, xn(t), x′

n(t)
)

– a
(
t, x(t), x′

(t)
)∣∣.

For each ε > , we will prove that there exists N >  such that

sup
t∈R

ρ(t)
∣∣(T(xn, yn)

)′(t) –
(
T(x, y)

)′(t)
∣∣ < ε, n > N . (.)

From (b), there exists δ >  such that

∣∣
∣∣a

(
t,


 + τ (t)

u,


ρ(t)
v

)
– a

(
t,


 + τ (t)

u,


ρ(t)
v

)∣∣
∣∣ <

m
ε

M

holds for all u, u, v, v satisfying |u – u| < δ and |v – v| < δ. From (.), there exists
N >  such that


 + τ (t)

∣
∣xn(t) – x(t)

∣
∣ < δ, ρ(t)

∣
∣x′

n(t) – x′
(t)

∣
∣ < δ, n > N, t ∈ R.
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Hence for n > N, we have

∣∣a
(
t, xn(t), x′

n(t)
)

– a
(
t, x(t), x′

(t)
)∣∣

=
∣∣
∣∣a

(
t,

( + τ (t))xn(t)
 + τ (t)

,


ρ(t)
ρ(t)x′

n(t)
)

– a
(

t,
( + τ (t))x(t)

 + τ (t)
,


ρ(t)

ρ(t)x′
(t)

)∣
∣∣∣

<
m

ε

M
, t ∈ R. (.)

Since �– is uniformly continuous on [–M, M], there exists δ >  such that

∣
∣�–(w) – �–(w)

∣
∣ <

mε


, |w – w| < δ, w, w ∈ [–M, M]. (.)

We can prove that there exists N >  such that

∣
∣∣
∣

∫ +∞

–∞

∣∣f
(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw

∣
∣∣
∣ <

δ


, n > N. (.)

In fact, by

∫ +∞

–∞

∣∣f
(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw ≤ 

∫ +∞

–∞
φr(w) dw < +∞,

there exists M >  such that

∫ –M

–∞

∣∣f
(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw <

δ


,

∫ +∞

M

∣
∣f

(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw <

δ


.

By the Lebesgue dominant convergence theorem, we have

lim
n→∞

∫ M

–M

f
(
w, yn(w), y′

n(w)
)

dw =
∫ M

–M

f
(
w, y(w), y′

(w)
)

dw,

then there exists N >  such that for n > N we have

∣
∣∣
∣

∫ M

–M

f
(
w, yn(w), y′

n(w)
)

dw –
∫ M

–M

f
(
w, y(w), y′

(w)
)

dw
∣
∣∣
∣ <

δ


, n > N.

Hence
∣
∣∣
∣

∫ +∞

–∞
f
(
w, yn(w), y′

n(w)
)

dw –
∫ +∞

–∞
f
(
w, y(w), y′

(w)
)

dw
∣
∣∣
∣

≤
∫ M

–M

∣∣f
(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw
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+
∫ –M

–∞

∣∣f
(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw

+
∫ +∞

M

∣
∣f

(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw

< 
δ


=

δ


, n > N.

Since � is uniformly continuous on [–M, M], then there exists δ >  such that

∣∣�(w) – �(w)
∣∣ <

δ


, |w – w| < δ, w, w ∈ [–M, M]. (.)

Similarly we find that there exists N >  such that

∣
∣∣
∣

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw –
∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
∣
∣∣
∣ <

δ

a–
, n > N.

It follows that

∣
∣∣∣a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw – a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
∣
∣∣∣ < δ, n > N.

One sees that

∣∣
∣∣a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
∣∣
∣∣ ≤ M, n = , , , . . . .

Then for n > N, (.) implies that

∣
∣∣∣�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

– �

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)∣

∣∣∣ <
δ


.

Together with (.), we get

∣∣
∣∣�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

–
∫ t

–∞
f
(
w, yn(w), y′

n(w)
)

dw

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)

–
∫ t

–∞
f
(
w, y(w), y′

(w)
)

dw
)∣

∣∣
∣

≤
∣∣
∣∣�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

– �

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)∣∣

∣∣

+
∫ t

–∞

∣∣f
(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw

≤
∣
∣∣
∣�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

– �

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)∣

∣∣
∣

+
∫ +∞

–∞

∣
∣f

(
w, yn(w), y′

n(w)
)

– f
(
w, y(w), y′

(w)
)∣∣dw

<
δ


+

δ


= δ, n > max{N, N}.
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Together with (.), we have

∣
∣∣
∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

–
∫ t

–∞
f
(
w, yn(w), y′

n(w)
)

dw
)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)

–
∫ t

–∞
f
(
w, y(w), y′

(w)
)

dw
)∣∣

∣∣

<
mε


, n > max{N, N}. (.)

Thus (.) and (.) imply that

ρ(t)
∣∣(T(xn, yn)

)′(t) –
(
T(x, y)

)′(t)
∣∣

<


m

mε


+

M
m



m
ε

M
= ε, n > max{N, N, N}, t ∈ R.

Then (.) holds.
Similarly we can prove that there exists N >  such that

∣
∣∣
∣

∫ +∞

–∞
φ
(
s, yn(s), y′

n(s)
)

ds –
∫ +∞

–∞
φ
(
s, y(s), y′

(s)
)

ds
∣
∣∣
∣ <

ε


, n > N. (.)

So for n > N we get


 + τ (t)

∣∣(T(xn, yn)
)
(t) –

(
T(x, y)

)
(t)

∣∣

≤ 
 + τ (t)

∣∣
∣∣

∫ +∞

–∞
φ
(
s, yn(s), y′

n(s)
)

ds –
∫ +∞

–∞
φ
(
s, y(s), y′

(s)
)

ds
∣∣
∣∣ +


 + τ (t)

×
∣∣
∣∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, yn(w), y′
n(w)) dw) –

∫ s
–∞ f (w, yn(w), y′

n(w)) dw)
ρ(s)a(s, xn(s), x′

n(s))
ds

–
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′
(w)) dw) –

∫ s
–∞ f (w, y(w), y′

(w)) dw)
ρ(s)a(s, x(s), x′

(s))
ds

∣
∣∣
∣

≤ ε


+


 + τ (t)

×
∣
∣∣∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, yn(w), y′
n(w)) dw) –

∫ s
–∞ f (w, yn(w), y′

n(w)) dw)
ρ(s)a(s, xn(s), x′

n(s))
ds

–
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′
(w)) dw) –

∫ s
–∞ f (w, y(w), y′

(w)) dw)
ρ(s)a(s, x(s), x′

(s))
ds

∣∣
∣∣.

We know from (.) and (.) that


 + τ (t)

∣
∣∣
∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, yn(w), y′
n(w)) dw) –

∫ s
–∞ f (w, yn(w), y′

n(w)) dw)
ρ(s)a(s, xn(s), x′

n(s))
ds

–
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′
(w)) dw) –

∫ s
–∞ f (w, y(w), y′

(w)) dw)
ρ(s)a(s, x(s), x′

(s))
ds

∣∣
∣∣

≤ 
 + τ (t)

∣
∣∣
∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, yn(w), y′
n(w)) dw) –

∫ s
–∞ f (w, yn(w), y′

n(w)) dw)
ρ(s)a(s, xn(s), x′

n(s))
ds
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–
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′
(w)) dw) –

∫ s
–∞ f (w, y(w), y′

(w)) dw)
ρ(s)a(s, xn(s), x′

n(s))
ds

∣∣∣
∣

+


 + τ (t)

×
∣∣∣
∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′
(w)) dw) –

∫ s
–∞ f (w, y(w), y′

(w)) dw)
ρ(s)a(s, xn(s), x′

n(s))
ds

–
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′
(w)) dw) –

∫ s
–∞ f (w, y(w), y′

(w)) dw)
ρ(s)a(s, x(s), x′

(s))
ds

∣∣
∣∣

≤ 
m


 + τ (t)

∣
∣∣∣

∫ t

ξ


ρ(s)

∣
∣∣∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, yn(w), y′

n(w)
)

dw
)

–
∫ s

–∞
f
(
w, yn(w), y′

n(w)
)

dw
)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′

(w)
)

dw
)

–
∫ s

–∞
f
(
w, y(w), y′

(w)
)

dw
)∣∣

∣∣ds
∣∣
∣∣

+


 + τ (t)

∣∣∣
∣

∫ t

ξ

M
ρ(s)

∣∣∣
∣


a(s, xn(s), x′

n(s))
–


a(s, x(s), x′

(s))

∣∣∣
∣ds

∣∣∣
∣

≤ 
m


 + τ (t)

∣∣∣
∣

∫ t

ξ


ρ(s)

mε


ds

∣∣∣
∣

+


m



 + τ (t)

∣∣∣
∣

∫ t

ξ

M
ρ(s)

∣∣a
(
s, xn(s), x′

n(s)
)

– a
(
s, x(s), x′

(s)
)∣∣ds

∣∣∣
∣

<
ε


+

ε


= ε, n > max{N, N, N}.

So for n > max{N, N, N, N}, we get


 + τ (t)

∣∣(T(xn, yn)
)
(t) –

(
T(x, y)

)
(t)

∣∣ <
ε


, t ∈ R.

Hence

lim
n→∞ sup

t∈R


 + τ (t)

∣
∣(T(xn, yn)

)
(t) –

(
T(x, y)

)
(t)

∣
∣ = .

From the above discussion, we get T(xn, yn) → T(x, y) as n → ∞.
Similarly we can prove that T(xn, yn) → T(x, y) as n → ∞. Then (.) is proved. So

T is continuous.
Secondly we prove that T maps bounded sets into relatively compact sets. Let � ∈ E be

a bounded set. We will prove that
(i) T(�) is bounded in E;

(ii) {t → (T(x,y))(t)
+τ (t) : (x, y) ∈ �}, {t → (T(x,y))(t)

+σ (t) : (x, y) ∈ �},
{t → ρ(t)(T(x, y))′(t) : (x, y) ∈ �}, and {t → �(t)(T(x, y))′(t) : (x, y) ∈ �} are
equicontinuous on each sub-closed interval [a, b] of R;

(iii) {t → (T(x,y))(t)
+τ (t) : (x, y) ∈ �}, {t → (T(x,y))(t)

+σ (t) : (x, y) ∈ �},
{t → ρ(t)(T(x, y))′(t) : (x, y) ∈ �}, and {t → �(t)(T(x, y))′(t) : (x, y) ∈ �} are
equiconvergent at t = ±∞.
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Since � ∈ E is bounded, then there exists r >  such that ‖(x, y)‖ ≤ r for all (x, y) ∈ �.
By (d) and (e), we know that there φr ∈ L(R) and for all (x, y) ∈ � such that (.) and (.)
hold.

(i) Prove that T(�) is bounded in E.
It is easy to show for all (x, y) ∈ � that


 + τ (t)

∣∣(T(x, y)
)
(t)

∣∣

≤ 
 + τ (t)

∫ +∞

–∞

∣∣φ
(
s, y(s), y′(s)

)∣∣ds +


 + τ (t)

×
∣∣
∣∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ |ϕ(w, y(w), y′(w))|dw) +
∫ s

–∞ |f (w, y(w), y′(w))|dw)
ρ(s)a(s, x(s), x′(s))

ds
∣∣
∣∣

≤
∫ +∞

–∞
φr(w) dw +


 + τ (t)

∣
∣∣
∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ φr(w) dw) +
∫ +∞

–∞ φr(w) dw)
ρ(s)m

ds
∣
∣∣
∣

≤
∫ +∞

–∞
φr(w) dw +

�–(�(a–
∫ +∞

–∞ φr(w) dw) +
∫ +∞

–∞ φr(w) dw)
m

and

ρ(t)
∣
∣(T(x, y)

)
(t)

∣
∣

≤ �–(�(a–
∫ +∞

–∞ |ϕ(w, y(w), y′(w))|dw) +
∫ t

–∞ |f (w, y(w), y′(w))|dw)
a(t, x(t), x′(t))

≤ �–(�(a–
∫ +∞

–∞ φr(w) dw) +
∫ +∞

–∞ φr(w) dw)
m

.

Hence T(�) is bounded.
Similarly we can show that T(�) is bounded. Thus T(�) is bounded.
(ii) Prove that

{
t → (T(x, y))(t)

 + τ (t)
: (x, y) ∈ �

}
,

{
t → (T(x, y))(t)

 + σ (t)
: (x, y) ∈ �

}
,

{
t → ρ(t)

(
T(x, y)

)′(t) : (x, y) ∈ �
}

,
{

t → �(t)
(
T(x, y)

)′(t) : (x, y) ∈ �
}

are equicontinuous on each sub-closed interval [a, b] of R.
For t, t ∈ [a, b] with t < t and (x, y) ∈ �, we have

∣
∣∣∣


 + τ (t)

(
T(x, y)

)
(t) –


 + τ (t)

(
T(x, y)

)
(t)

∣
∣∣∣

≤
∣
∣∣
∣


 + τ (t)

–


 + τ (t)

∣
∣∣
∣

∫ +∞

–∞

∣∣φ
(
w, y(w), y′(w)

)∣∣dw +
∣
∣∣
∣


 + τ (t)

×
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ s

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds

–


 + τ (t)

×
∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ s

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds
∣
∣∣
∣
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≤ ∣
∣τ (t) – τ (t)

∣
∣
∫ +∞

–∞
φr(w) dw +

∣∣
∣∣


 + τ (t)

–


 + τ (t)

∣∣
∣∣

×
∣∣
∣∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ |ϕ(w, y(w), y′(w))|dw) +
∫ +∞

–∞ |f (w, y(w), y′(w))|dw)
ρ(s)m

ds
∣∣
∣∣

+


 + τ (t)

×
∫ t

t

�–(�(a–
∫ +∞

–∞ |ϕ(w, y(w), y′(w))|dw) +
∫ +∞

–∞ |f (w, y(w), y′(w))|dw)
ρ(s)m

ds

≤ ∣∣τ (t) – τ (t)
∣∣
∫ +∞

–∞
φr(w) dw

+
∣∣τ (t) – τ (t)

∣∣
∫ b

a

ds
ρ(s)

�–(�(a–
∫ +∞

–∞ φr(w) dw) +
∫ +∞

–∞ φr(w) dw)
m

+
∫ t

t

ds
ρ(s)

�–(�(a–
∫ +∞

–∞ φr(w) dw) +
∫ +∞

–∞ φr(w) dw)
m

→  uniformly as t → t.

Furthermore, we have
∣
∣ρ(t)

(
T(x, y)

)′(t) – ρ(t)
(
T(x, y)

)′(t)
∣
∣

≤
∣
∣∣
∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ t
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ t
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

∣
∣∣
∣

+ �–
(

�

(
a–

∫ +∞

–∞
φr(w) dw

)
+

∫ +∞

–∞
φ – r(w) dw

)

×
∣∣
∣∣


a(t, x(t), x′(t))

–


a(t, x(t), x′(t))

∣∣
∣∣

≤ 
m

∣
∣∣
∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)∣∣
∣∣

+
M
m



∣
∣∣
∣a

(
t,

( + τ (t))x(t)
 + τ (t)

,


ρ(t)
ρ(t)x′(t)

)

– a
(

t,
( + τ (t))x(t)

 + τ (t)
,


ρ(t)

ρ(t)x′(t)
)∣∣

∣∣.

From (b), there exists δ >  such that
∣
∣∣
∣a

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)
– a

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣
∣∣
∣ <

m
ε

M

for all t, t ∈ [a, b] with |t – t| < δ and u, v ∈ [–r, r].
We see that

∣∣
∣∣�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

∣∣
∣∣ ≤ M
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and

∣∣
∣∣�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)∣
∣∣
∣

≤
∫ t

t

∣
∣f

(
w, y(w), y′(w)

)∣∣dw ≤
∫ t

t

φr(w) dw.

Since �– is uniformly continuous on [–M, M], then there exists δ >  such that

∣
∣∣
∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)∣∣
∣∣ < mε

for t, t ∈ [a, b] with |t – t| < δ. Then

∣
∣ρ(t)

(
T(x, y)

)′(t) – ρ(t)
(
T(x, y)

)′(t)
∣
∣ <

ε


, t, t ∈ [a, b], |t – t| < min{δ, δ}.

So {t → (T(x,y))(t)
+τ (t) : (x, y) ∈ �} and {t → ρ(t)(T(x, y))′(t) : (x, y) ∈ �} are equicontinuous on

[a, b].
Similarly we can show that {t → (T(x,y))(t)

+σ (t) : (x, y) ∈ �} and {t → �(t)(T(x, y))′(t) : (x, y) ∈
�} are equicontinuous on [a, b]. Then T(�) is equicontinuous on [a, b].

(iii) Prove that

{
t → (T(x, y))(t)

 + τ (t)
: (x, y) ∈ �

}
,

{
t → (T(x, y))(t)

 + σ (t)
: (x, y) ∈ �

}
,

{
t → ρ(t)

(
T(x, y)

)′(t) : (x, y) ∈ �
}

,
{

t → �(t)
(
T(x, y)

)′(t) : (x, y) ∈ �
}

are equiconvergent at t = ±∞.
We have for t < ξ by using (.) and (.)

∣∣
∣∣


 + τ (t)

(
T(x, y)

)
(t) –

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

∣∣
∣∣

≤ 
 + τ (t)

∫ +∞

–∞

∣∣φ
(
s, y(s), y′(s)

)∣∣ds

+
∣
∣∣∣


 + τ (t)

∫ ξ

t

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) +
∫ s

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds

–
τ (t)

 + τ (t)

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

∣
∣∣
∣ +


 + τ (t)

∫ +∞

–∞

∣∣ϕ
(
w, y(w), y′(w)

)∣∣dw

≤ 
 + τ (t)

∫ +∞

–∞
φr(w) dw

+


 + τ (t)

∫ ξ

t

∣∣
∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) +

∫ s
–∞ f (w, y(w), y′(w)) dw)

ρ(s)a(s, x(s), x′(s))
ds
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–
�–(�(

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw))

ρ(s)

∣∣∣
∣ds +


 + τ (t)

∫ +∞

–∞

∣∣ϕ
(
w, y(w), y′(w)

)∣∣dw

≤ 
 + τ (t)

∫ +∞

–∞
φr(w) dw

+


 + τ (t)

∫ ξ

t

∣∣
∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) +

∫ s
–∞ f (w, y(w), y′(w)) dw)

ρ(s)a(s, x(s), x′(s))
ds

–
�–(�(

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw))

ρ(s)

∣∣
∣∣ds

≤ 
 + τ (t)

∫ +∞

–∞
φr(w) dw

+

∫ ξ

t
|�–(�(a–

∫ +∞
–∞ ϕ(w,y(w),y′(w)) dw)+

∫ s
–∞ f (w,y(w),y′(w)) dw)–�–(�(a–

∫ +∞
–∞ ϕ(w,y(w),y′(w)) dw))|

ρ(s)a(s,x(s),x′(s)) ds
 + τ (t)

+


 + τ (t)

∫ ξ

t

∣
∣∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw))

ρ(s)a(s, x(s), x′(s))

–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw
ρ(s)

∣
∣∣∣ds

≤ 
 + τ (t)

∫ +∞

–∞
φr(w) dw +

∫ ξ

t | a–
ρ(s)a(s,x(s),x′(s)) – 

ρ(s) |ds
 + τ (t)

∫ +∞

–∞
φr(w) dw

+


m

∫ ξ

t
|�–(�(a–

∫ +∞
–∞ ϕ(w,y(w),y′(w)) dw)+

∫ s
–∞ f (w,y(w),y′(w)) dw)–�–(�(

∫ +∞
–∞ ϕ(w,y(w),y′(w)) dw))|

ρ(s) ds
 + τ (t)

.

One sees that
∣∣
∣∣�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
+

∫ s

–∞
f
(
w, y(w), y′(w)

)
dw

∣∣
∣∣ ≤ M.

Since �– is uniformly continuous on [–M, M], there exists δ >  such that

∣∣�–(u) – �–(u)
∣∣ < ε, u, u ∈ [–M, M], |u – u| < δ.

It is easy to see that there exists S < ξ such that

∣
∣∣
∣�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
+

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

– �

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)∣∣
∣∣

≤
∫ t

–∞

∣∣f
(
w, y(w), y′(w)

)∣∣dw

≤
∫ t

–∞
φr(w) dw < δ, t < T. (.)

On the other hand, there exists S < ξ such that

∣
∣a

(
t, x(t), x′(t)

)
– a–

∣
∣ =

∣∣
∣∣a

(
t,

(
 + τ (t)

) x(t)
 + τ (t)

,


ρ(t)
ρ(t)x′(t)

)
– a–

∣∣
∣∣ < ε, t < T
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and

∫ ξ

t | a–
ρ(s)a(s,x(s),x′(s)) – 

ρ(s) |ds
 + τ (t)

≤
∫ ξ

t


ρ(s) | a–
a(s,x(s),x′(s)) – |ds
 + τ (t)

≤
∫ ξ

T


ρ(s) | a–
a(s,x(s),x′(s)) – |ds +

∫ T
t


ρ(s) | a–

a(s,x(s),x′(s)) – |ds
 + τ (t)

≤
∫ ξ

T


ρ(s) | a–
m

+ |ds + 
m

∫ T
t


ρ(s) |a(s, x(s), x′(s)) – a–|ds

 + τ (t)

≤ [ a–
m

+ ]
∫ ξ

T


ρ(s) ds
 + τ (t)

+
ε

m

∫ T
t


ρ(s) ds

 + τ (t)
<

[ a–
m

+ ]
∫ ξ

T


ρ(s) ds
 + τ (t)

+
ε

m
.

There exists S < ξ such that


 + τ (t)

< ε,

∫ ξ

t | a–
ρ(s)a(s,x(s),x′(s)) – 

ρ(s) |ds
 + τ (t)

<
[

a–

m
+ 

]
ε +

ε

m
, t < S. (.)

Hence for t < min{S, S, S} we have

∣
∣∣
∣


 + τ (t)

(
T(x, y)

)
(t) –

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

∣
∣∣
∣

< ε

∫ +∞

–∞
φr(w) dw +

[(
a–

m
+ 

)
ε +

ε

m

]∫ +∞

–∞
φr(w) dw +


m

∫ ξ

t
ε

ρ(s) ds
 + τ (t)

< ε

∫ +∞

–∞
φr(w) dw +

[(
a–

m
+ 

)
ε +

ε

m

]∫ +∞

–∞
φr(w) dw +

ε

m
. (.)

It follows that {t → (T(x,y))(t)
+τ (t) : (x, y) ∈ �} is equiconvergent at t = –∞.

Furthermore, we have

∣
∣∣∣ρ(t)

(
T(x, y)

)′(t) –
∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

∣
∣∣∣

=
∣∣
∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ t
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

–
∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

∣
∣∣
∣

≤
∣∣
∣∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)

– �–
(

φ

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

))∣
∣∣∣
/

a
(
t, x(t), x′(t)

)

+
∣
∣∣∣
a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw

a(t, x(t), x′(t))
–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

∣
∣∣∣

≤ 
m

∣∣
∣∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)
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– �–
(

φ

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

))∣∣
∣∣

+
∫ +∞

–∞
φr(w) dw

∣∣
∣∣

a–

a(t, x(t), x′(t))
– 

∣∣
∣∣.

Similarly we can show that there exists S < ξ such that

∣∣
∣∣ρ(t)

(
T(x, y)

)′(t) –
∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

∣∣
∣∣ <

ε

m
+

ε

m

∫ +∞

–∞
φr(w) dw. (.)

We see that {t → ρ(t)(T(x, y))′(t) : (x, y) ∈ �} is equiconvergent at t = –∞.
Now we show that {t → (T(x,y))(t)

+τ (t) : (x, y) ∈ �} and {t → ρ(t)(T(x, y))′(t) : (x, y) ∈ �} are
equiconvergent at t = +∞. In fact, for t > ξ , we have

∣∣
∣∣
(T(x, y))(t)

 + τ (t)

–
∫ t

ξ

ds
ρ(s)

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ +∞

–∞ f (w, y(w), y′(w)) dw)
a+

∣∣
∣∣

≤
∫ +∞

–∞ |φ(s, y(s), y′(s))|ds
 + τ (t)

+
∣
∣∣
∣


 + τ (t)

∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ s

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds

–
∫ t

ξ

ds
ρ(s)

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ +∞

–∞ f (w, y(w), y′(w)) dw)
a+

∣∣
∣∣

≤
∫ +∞

–∞ φr(w) dw
 + τ (t)

+


 + τ (t)

×
∫ t

ξ

∣
∣∣
∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ s
–∞ f (w, y(w), y′(w)) dw)

ρ(s)a(s, x(s), x′(s))

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

ρ(s)a(s, x(s), x′(s))

∣∣
∣∣ds

+


 + τ (t)

∣∣
∣∣

∫ t

ξ

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ +∞

–∞ f (w, y(w), y′(w)) dw)
ρ(s)a(s, x(s), x′(s))

ds

–
∫ t

ξ

ds
ρ(s)

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ +∞

–∞ f (w, y(w), y′(w)) dw)
a+

∣
∣∣
∣

≤
∫ +∞

–∞ φr(w) dw
 + τ (t)

+


m


 + τ (t)

×
∫ t

ξ

∣∣
∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ s
–∞ f (w, y(w), y′(w)) dw)

ρ(s)

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

ρ(s)

∣
∣∣
∣ds

+
M

 + τ (t)

∫ t

ξ


ρ(s)

∣∣
∣∣


a(s, x(s), x′(s))

–


a+

∣∣
∣∣ds
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and

∣
∣∣
∣ρ(t)

(
T(x, y)

)′(t) –
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

a+

∣
∣∣
∣

≤
∣
∣∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ t
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

a+

∣
∣∣∣

≤
∣
∣∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ t
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

∣
∣∣∣

+
∣
∣∣∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

a+

∣
∣∣∣

≤ 
m

∣∣
∣∣�

–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ t

–∞
f
(
w, y(w), y′(w)

)
dw

)

– �–
(

�

(
a–

∫ +∞

–∞
ϕ
(
w, y(w), y′(w)

)
dw

)
–

∫ +∞

–∞
f
(
w, y(w), y′(w)

)
dw

)∣∣
∣∣

+ M
∣
∣∣
∣


a(t, x(t), x′(t))

–


a+

∣
∣∣
∣.

Similarly we can prove that

∣
∣∣
∣
(T(x, y))(t)

 + τ (t)

–
∫ t

ξ

ds
ρ(s)

�–(�(a–
∫ +∞

–∞ ϕ(w, y(w), y′(w)) dw) –
∫ +∞

–∞ f (w, y(w), y′(w)) dw)
a+

∣
∣∣
∣ → ,

∣∣
∣∣ρ(t)

(
T(x, y)

)′(t)

–
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ +∞
–∞ f (w, y(w), y′(w)) dw)

a+

∣∣
∣∣ → 

uniformly as t → +∞. Then {t → (T(x,y))(t)
+τ (t) : (x, y) ∈ �} and {t → ρ(t)(T(x, y))′(t) : (x, y) ∈

�} are equiconvergent as t → +∞.
Similarly we can prove that {t → (T(x,y))(t)

+σ (t) : (x, y) ∈ �} and {t → �(t)(T(x, y))′(t) : (x, y) ∈
�} are equiconvergent as t → ±∞.

From the above discussion, we know from Claim . that T(�) is relatively compact.
Then T is completely continuous. The proof is complete. �

3 Main theorem
In this section, the main results on the existence of solutions of BVP (.)-(.) are estab-
lished. For � ∈ L(R), denote ‖�‖ =

∫ +∞
–∞ |� (s)|ds. We need the following assumption:
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(B) there exist constants aij ≥  (i = , , , , j = , , ), Aij ≥  (i = , , j = , , ),
μi ≥  (i = , ), nonnegative functions ϑi ∈ L(R) (i = , ) and �i ∈ L(R)
(i = , , , ) such that

∣∣
∣∣φ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣∣
∣∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣∣
∣∣ϕ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣∣
∣∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣
∣∣
∣f

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣
∣∣
∣ ≤ ϑ(t)

[
A�

(|u|μ
)

+ A�
(|v|μ

)
+ A

]
,

t ∈ R, u, v ∈ R,
∣∣
∣∣χ

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣∣
∣∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣
∣∣∣ψ

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣
∣∣∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣
∣∣
∣g

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣
∣∣
∣ ≤ ϑ(t)

[
A�

(|u|μ
)

+ A�
(|v|μ

)
+ A

]
,

t ∈ R, u, v ∈ R.

Denote

A =
(
n–

 a–a + a + a
)‖�‖,

A = a‖�‖ +
�–(�(nA) + A‖ϑ‖ + +(A+A)‖ϑ‖ω(/A)

ω(/A) �(n))
m

,

B = (a + a)‖�‖ +
ν( �(nA)+A‖ϑ‖

�(n) + +(A+A)‖ϑ‖ω(/A)
ω(/A) )

m
,

B =
(
n–

 b–a + a + a
)‖�‖,

A = a‖�‖ +
�–(�(nB) + A‖ϑ‖ + +(A+A)‖ϑ‖ω(/B)

ω(/B) �(n))
m

,

B = (a + a)‖�‖ +
ν( �(nB)+A‖ϑ‖

�(n) + +(A+A)‖ϑ‖ω(/B)
ω(/B) )

m
.

Theorem . Suppose that (a)-(f) hold. Then BVP (.)-(.) has at least one solution if
one of the following items holds:

(i) μμ < ;
(ii) μμ =  with Bμ

 B <  or BBμ
 < ;

(iii) μμ >  with n being a positive integer and


μμ – 

A

[A + BAμ
( μμ

μμ– )μ ]μ
≥ B

or


μμ – 

A

[A + BAμ
 ( μμ

μμ– )μ ]μ
≥ B.
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Proof Let T be defined as in Section . By Lemma ., T is completely continuous and
(x, y) ∈ E is a solution of BVP (.)-(.) if and only if (x, y) ∈ E is a fixed point of T . We
should define an open bounded subset � of E centered at zero such that T(ω) ⊆ �. Then
the fixed points of T are obtained by using the Schauder fixed point theorem.

For (x, y) ∈ E, by definition of T, we have

[
�

(
ρ(t)a

(
t, x(t), x′(t)

)(
T(x, y)

)′(t)
)]′ + f

(
t, y(t), y′(t)

)
= , t ∈ R,

(
T(x, y)

)
(ξ ) =

∫ +∞

–∞
φ
(
s, y(s), y′(s)

)
ds,

lim
t→–∞ρ(t)

(
T(x, y)

)′(t) =
∫ +∞

–∞
ϕ
(
s, y(s), y′(s)

)
ds.

Then

|(T(x, y))(t)|
 + τ (t)

≤ |(T(x, y))(ξ )|
 + τ (t)

+
|(T(x, y))(t) – (T(x, y))(ξ )|

 + τ (t)

≤
∫ +∞

–∞

∣
∣φ

(
s, y(s), y′(s)

)∣∣ds +
| ∫ t

ξ
(T(x, y))′(w) dw|

 + τ (t)

≤
∫ +∞

–∞

∣
∣φ

(
s, y(s), y′(s)

)∣∣ds +
| ∫ t

ξ


ρ(s)ρ(s)|(T(x, y))′(s)|ds|
 + τ (t)

≤
∫ +∞

–∞

∣∣
∣∣φ

(
s,

(
 + σ (s)

) y(s)
 + σ (s)

,


�(s)
�(s)y′(s)

)∣∣
∣∣ds

+ sup
t∈R

ρ(t)
∣∣(T(x, y)

)′(t)
∣∣

≤
∫ +∞

–∞
�(s)

[
a

( |y(s)|
 + σ (s)

)μ

+ a
[
�(s)

∣∣y′(s)
∣∣]μ + a

]
ds

+ sup
t∈R

ρ(t)
∣
∣(T(x, y)

)′(t)
∣
∣

≤
∫ +∞

–∞
�(s) ds

[
(a + a)‖y‖μ + a

]
+ sup

t∈R
ρ(t)

∣∣(T(x, y)
)′(t)

∣∣

= a‖�‖ + (a + a)‖�‖‖y‖μ + sup
t∈R

ρ(t)
∣∣(T(x, y)

)′(t)
∣∣.

On the other hand, we have from (.) and (.) that

ρ(t)
∣
∣(T(x, y)

)′(t)
∣
∣

≤
∣
∣∣
∣
�–(�(a–

∫ +∞
–∞ ϕ(w, y(w), y′(w)) dw) –

∫ t
–∞ f (w, y(w), y′(w)) dw)

a(t, x(t), x′(t))

∣
∣∣
∣

≤ �–(�(a–
∫ +∞

–∞ |ϕ(w, y(w), y′(w))|dw) +
∫ +∞

–∞ |f (w, y(w), y′(w))|dw)
m

≤ �–
(

�

(
a–

∫ +∞

–∞
�(s) ds

[
(a + a)‖y‖μ + a

])

+
∫ +∞

–∞
ϑ(s) ds

[
(A + A)�

(‖y‖μ
)

+ A
]
)

/
m

= �–(�
(
a–a‖�‖ + (a + a)‖�‖‖y‖μ

)

+ A‖ϑ‖ + (A + A)‖ϑ‖�
(‖y‖μ

))
/m.
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It is easy to see that

�
(
a–a‖�‖ + (a + a)‖�‖‖y‖μ

)

≤
{

�(a–a‖�‖ + (a + a)‖�‖n), ‖y‖μ ≤ n,
�((n–

 a–a‖�‖ + (a + a)‖�‖)‖y‖μ ), ‖y‖μ > n

≤ �(nA) +
�(‖y‖μ )
ω(/A)

.

Hence

ρ(t)
∣
∣(T(x, y)

)′(t)
∣
∣ ≤ �–(�(nA) + �(‖y‖μ )

ω(/A) + A‖ϑ‖ + (A + A)‖ϑ‖�(‖y‖μ ))
m

=
�–(�(nA) + A‖ϑ‖ + +(A+A)‖ϑ‖ω(/A)

ω(/A) �(‖y‖μ ))
m

≤ �–(�(nA) + A‖ϑ‖ + +(A+A)‖ϑ‖ω(/A)
ω(/A) �(n))

m

+
�–(( �(nA)+A‖ϑ‖

�(n) + +(A+A)‖ϑ‖ω(/A)
ω(/A) )�(‖y‖μ ))

m

≤ �–(�(nA) + A‖ϑ‖ + +(A+A)‖ϑ‖ω(/A)
ω(/A) �(n))

m

+
ν( �(nA)+A‖ϑ‖

�(n) + +(A+A)‖ϑ‖ω(/A)
ω(/A) )

m
‖y‖μ .

So

|(T(x, y))(t)|
 + τ (t)

≤ a‖�‖ + (a + a)‖�‖‖y‖μ + sup
t∈R

ρ(t)
∣∣(T(x, y)

)′(t)
∣∣

≤ a‖�‖ + (a + a)‖�‖‖y‖μ

+
�–(�(nA) + A‖ϑ‖ + +(A+A)‖ϑ‖ω(/A)

ω(/A) �(n))
m

+
ν( �(nA)+A‖ϑ‖

�(n) + +(A+A)‖ϑ‖ω(/A)
ω(/A) )

m
‖y‖μ = A + B‖y‖μ .

It follows that

∥∥T(x, y)
∥∥ ≤ A + B‖y‖μ . (.)

Similarly, we can show that

∥∥T(x, y)
∥∥ ≤ A + B‖x‖μ . (.)

For r > , r > , denote

� =
{

(x, y) ∈ E : ‖x‖ < r,‖y‖ < r
}

.
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We will choose suitable positive constants r, r such that T(�) ⊆ �. In fact, for (x, y) ∈ �,
we have from (.) and (.)

∥
∥T(x, y)

∥
∥ ≤ A + Brμ



and

∥∥T(x, y)
∥∥ ≤ A + Brμ

 .

So one needs to seek r, r >  such that

A + Brμ
 ≤ r, A + Brμ

 ≤ r. (.)

To satisfy (.), we firstly prove that there r, r >  such that either

(A + Brμ
 )μ

r – A
≤ 

B
or

(A + Brμ
 )μ

r – A
≤ 

B
. (.)

(i) μμ < . It is easy to see that we can choose r >  sufficiently large such that

(A + Brμ
 )μ

r – A
≤ 

B
.

Then we choose r >  such that

A + Brμ
 ≤ r ≤

(
r – A

B

) 
μ

.

Hence there exist r, r >  such that (.) holds. Let � = {(x, y) ∈ E : ‖x‖ < r,‖y‖ < r}. So
T� ⊂ �. Thus the Schauder fixed point theorem [] implies that the operator T has
at least one fixed point in �. So BVP (.)-(.) has at least one solution.

(ii) μμ = . If Bμ
 B < , we choose a positive integer n such that Bμ

 B < . It is easy
to see that we can choose r >  sufficiently large such that

(A + Brμ
 )μ

r – A
≤ 

B
.

Then we choose r >  such that

A + Brμ
 ≤ r ≤

(
r – A

B

) 
μ

.

Hence there exist r, r >  such that (.) holds. Let � = {(x, y) ∈ E : ‖x‖ < r,‖y‖ < r}.
If BBμ

 < , we choose a positive integer n such that Bμ
 B < . It is easy to see that we

can choose r >  sufficiently large such that

(A + Brμ
 )μ

r – A
≤ 

B
.
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Then we choose r >  such that

A + Brμ
 ≤ r ≤

(
r – A

B

) 
μ

.

Hence there exist r, r >  such that (.) holds. Let � = {(x, y) ∈ E : ‖x‖ < r,‖y‖ < r}.
So T� ⊂ �. Thus the Schauder fixed point theorem [] implies that the oper-

ator T has at least one fixed point in �. So BVP (.)-(.) has at least one solu-
tion.

(iii) μμ > . If


μμ – 

A

[A + BAμ
( μμ

μμ– )μ ]μ
≥ B,

we choose r = μμA
μμ– , and it is easy to see that

r – A

(A + Brμ
 )μ

≥ B.

So there exists r >  such that

A + Brμ
 ≤ r ≤

(
r – A

B

) 
μ

.

Hence there exist r, r >  such that (.) holds. Let � = {(x, y) ∈ E : ‖x‖ < r,‖y‖ <
r}.

If


μμ – 

A

[A + BAμ
 ( μμ

μμ– )μ ]μ
≥ B,

we choose r = μμA
μμ– , and it is easily seen that

r – A

(A + Brμ
 )μ

≥ B.

So there exists r >  such that

A + Brμ
 ≤ r ≤

(
r – A

B

) 
μ

.

Hence there exist r, r >  such that (.) holds. Let � = {(x, y) ∈ E : ‖x‖ < r,‖y‖ < r}.
So T� ⊂ �. Thus the Schauder fixed point theorem [] implies that the operator T

has at least one fixed point in �. So BVP (.)-(.) has at least one solution. �

4 Three examples
To show the application of Theorem ., we give three examples.
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Example . Consider the following boundary value problem of a second-order differen-
tial system:

x′′(t) +
e–t

√
π

[
A

(
y(t)

 + |t|
)μ

+ A
(|t|y′(t)

)μ + A

]
= , t ∈ R,

y′′(t) +


π ( + t)

[
A

(
x(t)

 + |t|
)μ

+ A
(|t|x′(t)

)μ + A

]
= , t ∈ R,

x() = a, lim
t→–∞ x′(t) = b,

y() = a, lim
t→–∞ y′(t) = b,

(.)

where a, b, a, b, Ai,j (i, j = , ) ∈ R, μ,μ ≥  are constants. Then BVP (.) has at least
one solution if one of the following items holds:

(i) μμ < ;
(ii) μμ =  for sufficiently small |A|, |A|, |A|, and |A|;

(iii) μμ >  with n being a positive integer and


μμ – 

A

[A + BAμ
( μμ

μμ– )μ ]μ
≥ B

or


μμ – 

A

[A + BAμ
 ( μμ

μμ– )μ ]μ
≥ B,

where

A = a + A + A + A + A = a + b + A + A + A,

B = a + a + A + A + A + A = b + A + A + A,

A = a + B + A + A + A = a + b + A + A + A,

B = a + a + B + A + A + A = b + A + A + A.

Proof Corresponding to BVP (.)-(.), we choose ξ = η =  and

ρ(t) = �(t) = , �(s) = �(s) = s, a(t, u, v) = b(t, u, v) = ,

φ(t, u, v) =
ae√

π

–t

, ϕ(t, u, v) =
b√
π

e–t
,

χ (t, u, v) =
a√
π

e–t
, ψ(t, u, v) =

b√
π

e–t

and

f (t, u, v) =
e–t

√
π

[
A

(
u

 + |t|
)μ

+ A
(|t|v)μ + A

]
,

g(t, u, v) =


π ( + t)

[
A

(
u

 + |t|
)μ

+ A
(|t|v)μ + A

]
.
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One sees that τ (t) = σ (t) = |t|, m = M = m = M = a– = a+ = b– = b+ = , �–(x) =
�–(x) = x, ω(x) = ν(x) = ω(x) = ν(x) = x, and we choose

a = a = , a = a, a = a = , a = b,

a = a = , a = a, a = a = , a = b

and

�(t) = �(t) = �(t) = �(t) =
e–t

√
π

, ϑ(t) =
e–t

√
π

, ϑ(t) =


π ( + t)
;

we have
∣
∣∣
∣φ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣
∣∣
∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣∣
∣∣ϕ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣∣
∣∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣∣
∣∣f

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣∣
∣∣ ≤ ϑ(t)

[|A||u|μ + |A||v|μ + |A|
]
, t ∈ R, u, v ∈ R,

∣
∣∣∣χ

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣
∣∣∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣
∣∣
∣ψ

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣
∣∣
∣ ≤ �(t)

[
a|u|μ + a|v|μ + a

]
, t ∈ R, u, v ∈ R,

∣∣∣
∣g

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣∣∣
∣ ≤ ϑ(t)

[|A‖u|μ + |A||v|μ + |A|
]
, t ∈ R, u, v ∈ R.

So (a)-(f ) mentioned in Section , and assumption (B) in Theorem . are satisfied. By
direct computation, choosing n = , we have

‖�‖ = ‖�‖ = ‖�‖ = ‖�‖ = ‖ϑ‖ = ‖ϑ‖ = ,

A = a + a + a = b,

A = a + A + A + A + A = a + b + A + A + A,

B = a + a + A + A + A + A = b + A + A + A,

B = a + a + a = b,

A = a + B + A + A + A = a + b + A + A + A,

B = a + a + B + A + A + A = b + A + A + A.

It follows from Theorem . that
(i) μμ < ; BVP (.) has at least one solution;

(ii) μμ =  with Bμ
 B <  or BBμ

 < ; BVP (.) has at least one solution;
(iii) μμ >  with n being a positive integer and


μμ – 

A

[A + BAμ
( μμ

μμ– )μ ]μ
≥ B
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or


μμ – 

A

[A + BAμ
 ( μμ

μμ– )μ ]μ
≥ B;

BVP (.) has at least one solution.
The proof is completed. �

Let

�(x) = �(x) = x, x ∈ R, ρ(t) = �(t) =

{√|t|, |t| ≤ ,
|t|, |t| > ,

p(t) =

{
√|t| , t ∈ [–, ) ∪ (, ],


t , |t| > ,

q(t) =

{

√t

, t ∈ [–, ) ∪ (, ],

t , |t| > .

One can see by direct computation that

τ (t) = σ (t) =
∣∣
∣∣

∫ t



du
ρ(u)

∣∣
∣∣ =

∣∣
∣∣

∫ t



du
�(u)

∣∣
∣∣ =

{

√|t|, |t| ≤ ,

 + ln |t|, |t| > .

Example . Consider the following boundary value problem of a second-order differ-
ential system:

[(
ρ(t)x′(t)

)]′ + p(t)
[

A

(
y(t)

 + σ (t)

)μ

+ A
(
�(t)y′(t)

)μ + A

]
= , t ∈ R,

[(
�(t)y′(t)

)]′ + q(t)
[

A

(
x(t)

 + τ (t)

)μ

+ A
(
ρ(t)x′(t)

)μ + A

]
= , t ∈ R,

x() =
∫ +∞

–∞
p(s)

[
a

(
y(s)

 + σ (s)

)μ

+ a
(
�(s)y′(s)

)μ + a

]
ds,

lim
t→–∞ρ(t)x′(t) =

∫ +∞

–∞
p(s)

[
a

(
y(s)

 + σ (s)

)μ

+ a
(
�(s)y′(s)

)μ + a

]
ds,

y() =
∫ +∞

–∞
q(s)

[
a

(
x(s)

 + τ (s)

)μ

+ a
(
ρ(s)x′(s)

)μ + a

]
ds,

lim
t→–∞�(t)y′(t) =

∫ +∞

–∞
q(s)

[
a

(
x(s)

 + τ (s)

)μ

+ a
(
ρ(s)x′(s)

)μ + a

]
ds,

(.)

where aij (i = , , , , j = , , ), Aij (i = , , j = , , ) are nonnegative constants. Then
BVP (.) has at least one solution if one of the following items holds:

(i) μμ < ;
(ii) μμ =  for sufficiently small aij (i = , , , , j = , , ), Aij (i = , , j = , );

(iii) μμ >  with n being a positive integer and


μμ – 

A

[A + BAμ
( μμ

μμ– )μ ]μ
≥ B

or


μμ – 

A

[A + BAμ
 ( μμ

μμ– )μ ]μ
≥ B,
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where

A = a + 
√

(a + a + a) + A + (A + A),

B = (a + a) + + 
√

(a + a + a) + A + (A + A),

A = a + 
√

(a + a + a) + A + (A + A),

B = (a + a) + + 
√

(a + a + a) + A + (A + A).

Proof Corresponding to BVP (.)-(.), we find that:
(a) ρ,� ∈ C(R, (,∞)) are continuous on R and satisfy

∫ 

–∞


ρ(s)
ds = +∞,

∫ +∞




ρ(s)

ds = +∞,

∫ 

–∞


�(s)
ds = +∞,

∫ +∞




�(s)

ds = +∞.

(b) a(t, x, y) = b(t, x, y) ≡  satisfies

lim
t→±∞ a

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)

=  = a± uniformly for u, v in each bounded interval,

lim
t→±∞ b

(
t,

(
 + σ (t)

)
u,

v
�(t)

)

=  = b± uniformly for u, v in each bounded interval,

a
(

t,
(
 + τ (t)

)
u,

v
ρ(t)

)
≡ , m = M = ,

b
(

t,
(
 + σ (t)

)
u,

v
�(t)

)
≡ , t ∈ R, u, v ∈ R, m,

(u, v) → a
(

t,
(
 + τ (t)

)
u,

v
ρ(t)

)
is uniformly continuous for t ∈ R,

(u, v) → b
(

t,
(
 + σ (t)

)
u,

v
�(t)

)
is uniformly continuous for t ∈ R.

(c) �, � are quasi-Laplacian operators, the inverse operators of �, � are �–(x) =
�–(x) = x 

 , respectively, the supporting functions of � and �– are denoted by ω(x) = x

and ν(x) = x 
 , respectively, the supporting functions of � and �– by ω(x) = x and

ν(x) = x 
 .

(d) f and g satisfy

∣∣∣
∣f

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣∣∣
∣ ≤ ∣∣p(t)

∣∣[A�
(|u|μ

)
+ A�

(|v|μ
)

+ A
]
,

∣∣
∣∣g

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣∣
∣∣ ≤ ∣

∣q(t)
∣
∣[A�

(|u|μ
)

+ A�
(|v|μ

)
+ A

]
,

one finds that f is a σ -Carathéodory function, and g is a τ -Carathéodory function.
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(e) φ, ϕ, χ , ψ satisfy

∣
∣∣
∣φ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣
∣∣
∣ ≤ ∣∣p(t)

∣∣[a|u|μ + a|v|μ + a
]
,

∣∣∣
∣ϕ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣∣∣
∣ ≤ ∣∣p(t)

∣∣[a|u|μ + a|v|μ + a
]
,

∣∣
∣∣χ

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣∣
∣∣ ≤ ∣

∣q(t)
∣
∣[a|u|μ + a|v|μ + a

]
,

∣∣
∣∣ψ

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣∣
∣∣ ≤ ∣

∣q(t)
∣
∣[a|u|μ + a|v|μ + a

]
,

and φ, ϕ are σ -Carathéodory functions, χ , ψ are τ -Carathéodory functions.
(f ) ξ = η = .
So (a)-(f ) mentioned in Section  and assumption (B) in Theorem . are satisfied. By

direct computation we know that ‖ϑ‖ = , ‖ϑ‖ = , ‖�‖ = ‖�‖ = , and ‖�‖ =
‖�‖ = . By direct computation, we have

A = (a + a + a),

A = a + 
√

A
 + A + (A + A),

B = (a + a) + + 
√

A
 + A + (A + A),

B = (a + a + a),

A = a + 
√

B
 + A + (A + A),

B = (a + a) + + 
√

B
 + A + (A + A).

It follows from Theorem . that
(i) μμ <  implies that BVP (.) has at least one solution;

(ii) μμ =  with Bμ
 B <  or BBμ

 <  implies that BVP (.) has at least one
solution. One finds that Bμ

 B <  or BBμ
 <  holds if aij, Aij are sufficiently

small. Then BVP (.) has at least one solution if aij, Aij are sufficiently small;
(iii) μμ >  with n =  and


μμ – 

A

[A + BAμ
( μμ

μμ– )μ ]μ
≥ B

or


μμ – 

A

[A + BAμ
 ( μμ

μμ– )μ ]μ
≥ B

implies that BVP (.) has at least one solution.
The proof is completed. �
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Example . Consider the following boundary value problem:

(√|t|
(

 +


 + t

(
arctan

(
t + x(t) + x′(t)))

)
x′(t)

)′

+
e–t

√
π

[
A

(
y(t)

 + 
√|t|

)μ

+ A
(√|t|y′(t)

)μ + A

]
= ,

(√|t|
(

 +


 + t

(
arctan

(
t + x(t) + x′(t)))

)
y′(t)

)′

+


π ( + t)

[
A

(
x(t)

 + 
√|t|

)μ

+ A
(√|t|x′(t)

)μ + A

]
= ,

x() = , lim
t→–∞

√|t|x′(t) = ,

y() = , lim
t→–∞

√|t|y′(t) = .

(.)

Corresponding to BVP (.)-(.), we have

�(x) = �(x) = x, ρ(t) = �(t) =
√|t|,

a(t, u, v) = b(t, u, v) =  +


 + t

(
arctan

(
t + x(t) + x′(t))),

φ(t) = ϕ(t) = χ (t) = ψ(t) = , ξ = η = ,

ϑ(t) =
e–t

√
π

, ϑ(t) =


π ( + t)
.

One sees that

�–(x) = �–(x) = ω(x) = ω(x) = ν(x) = ν(x) = x,

a± = b± = , m = m = , M = M =  +
π


,

τ (t) = σ (t) =
∣
∣∣
∣

∫ t



√|s| ds
∣
∣∣
∣ = 

√|t|,
∫ 

–∞


ρ(s)
ds =

∫ +∞




ρ(s)

ds =
∫ 

–∞


�(s)
ds =

∫ +∞




�(s)

ds = +∞.

On the other hand, suppose that f , g are continuous functions and there exist constants
Aij ≥  (i = , , j = , , ), μi ≥  (i = , ), and nonnegative functions ϑi ∈ L(R) (i = , )
such that

φ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)
= , ϕ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)
= ,

χ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)
= , ψ

(
t,

(
 + σ (t)

)
u,

v
�(t)

)
= ,

∣
∣∣
∣f

(
t,

(
 + σ (t)

)
u,

v
�(t)

)∣
∣∣
∣ ≤ ϑ(t)

[
A|u|μ + A|v|μ + A

]
, t ∈ R, u, v ∈ R,

∣∣
∣∣g

(
t,

(
 + τ (t)

)
u,

v
ρ(t)

)∣∣
∣∣ ≤ ϑ(t)

[
A|u|μ + A|v|μ + A

]
, t ∈ R, u, v ∈ R.
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It is easy to see that (a)-(f ) hold with aij =  (i = , , , , j = , , ), �i(t) =  (i = , ,
, ).

For ease of expression, choose n = , by direct computation, we have

‖�‖ = ‖�‖ = ‖�‖ = ‖�‖ = , ‖ϑ‖ = ‖ϑ‖ = ,

A = (a + a + a)‖�‖ = ,

A = a‖�‖ + A + A‖ϑ‖ + (A + A)‖ϑ‖ = A + A + A,

B = (a + a)‖�‖ + A + A‖ϑ‖ + (A + A)‖ϑ‖ = A + A + A,

B = (a + a + a)‖�‖ = ,

A = a‖�‖ + B + A‖ϑ‖ + (A + A)‖ϑ‖ = A + A + A,

B = (a + a)‖�‖ + B + A‖ϑ‖ + (A + A)‖ϑ‖ = A + A + A.

Then Theorem . implies that BVP (.) has at least one solution if one of the following
items holds:

(i) μμ < ;
(ii) μμ =  with Bμ

 B <  or Bμ
B < ;

(iii) μμ >  with


μμ – 

A

[A + BAμ
( μμ

μμ– )μ ]μ
≥ B

or


μμ – 

A

[A + BAμ
 ( μμ

μμ– )μ ]μ
≥ B.

Remark . In the above examples, f , g , φ, ϕ, ρ , �, χ , and ψ are singular at . It is easily
seen that the results in [, , –, –] cannot be applied to solve BVP (.), BVP
(.), and BVP (.).
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