143 research outputs found

    Spike detection and sorting: combining algebraic differentiations with ICA

    Get PDF
    International audienceA new method for action potentials detection is proposed. The method is based on a numerical differentiation, as recently intro- duced from operational calculus. We show that it has good performance as compared to existing methods. We also combine the proposed method with ICA in order to obtain spike sorting

    A 31T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature

    Get PDF
    We have developed a pulsed magnet system with panoramic access for synchrotron x-ray diffraction in magnetic fields up to 31T and at low temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a liquid nitrogen bath to cool the pulsed coil, and a helium cryostat allowing sample temperatures from 1.5 up to 250 K. Using a 1.15MJ mobile generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 16.5 ms and a repetition rate of 2 pulses/hour at 31 T. The setup was validated for single crystal diffraction on the ESRF beamline ID06

    Pervasive deformation of an oceanic plate and relationship to large >Mw 8 intraplate earthquakes: The northern Wharton Basin, Indian Ocean

    Get PDF
    Large-magnitude intraplate earthquakes within the ocean basins are not well understood. The Mw 8.6 and Mw 8.2 strike-slip intraplate earthquakes on 11 April 2012, while clearly occurring in the equatorial Indian Ocean diffuse plate boundary zone, are a case in point, with disagreement on the nature of the focal mechanisms and the faults that ruptured. We use bathymetric and seismic reflection data from the rupture area of the earthquakes in the northern Wharton Basin to demonstrate pervasive brittle deformation between the Ninetyeast Ridge and the Sunda subduction zone. In addition to evidence of recent strike-slip deformation along approximately north-south–trending fossil fracture zones, we identify a new type of deformation structure in the Indian Ocean: conjugate Riedel shears limited to the sediment section and oriented oblique to the north-south fracture zones. The Riedel shears developed in the Miocene, at a similar time to the onset of diffuse deformation in the central Indian Ocean. However, left-lateral strike-slip reactivation of existing fracture zones started earlier, in the Paleocene to early Eocene, and compartmentalizes the Wharton Basin. Modeled rupture during the 11 April 2012 intraplate earthquakes is consistent with the location of two reactivated, closely spaced, approximately north-south–trending fracture zones. However, we find no evidence for WNW-ESE–trending faults in the shallow crust, which is at variance with most of the earthquake fault models

    High frequency magnetic oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) in pulsed magnetic field of up to 81 T

    Full text link
    De Haas-van Alphen oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) are studied in pulsed magnetic fields up to 81 T. The long decay time of the pulse allows determining reliable field-dependent amplitudes of Fourier components with frequencies up to several kiloteslas. The Fourier spectrum is in agreement with the model of a linear chain of coupled orbits. In this model, all the observed frequencies are linear combinations of the frequency linked to the basic orbit α\alpha and to the magnetic-breakdown orbit β\beta.Comment: 6 pages, 4 figure

    Safety and efficacy of fluticasone propionate in the topical treatment of skin diseases

    Get PDF
    Fluticasone propionate - the first carbothioate corticosteroid - has been classified as a potent anti-inflammatory drug for dermatological use. It is available as 0.05% cream and 0.005% ointment formulations for the acute and maintenance treatment of patients with dermatological disorders such as atopic dermatitis, psoriasis and vitiligo. This glucocorticoid is characterized by high lipophilicity, high glucocorticoid receptor binding and activation, and a rapid metabolic turnover in skin. Although skin blanching following fluticasone propionate exceeds that of corticosteroids of medium strength, several clinical trials demonstrate a low potential for cutaneous and systemic side-effects, even in difficult-to-treat areas like the face, the eyelids and intertriginous areas. Even among paediatric patients with atopic dermatitis, fluticasone propionate proved to be safe and effective. These pharmacological and clinical properties are reflected by the high therapeutic index of this glucocorticoid

    In-situ evidence for dextral active motion at the Arabia-India plate boundary

    No full text
    International audienceThe Arabia-India plate boundary--also called theOwen fracture zone--is perhaps the least-known boundary among large tectonic plates1-6. Although it was identified early on as an example of a transform fault converting the divergent motion along the Carlsberg Ridge to convergent motion in the Himalayas7, its structure and rate of motion remains poorly constrained. Here we present the first direct evidence for active dextral strike-slip motion along this fault, based on seafloor multibeam mapping of the Arabia-India-Somalia triple junction in the northwest Indian Ocean. There is evidence for 12km of apparent strike-slip motion along the mapped segment of the Owen fracture zone, which is terminated to the south by a 50-km-wide pull-apart basin bounded by active faults. By evaluating these new constraints within the context of geodetic models of global plate motions, we determine a robust angular velocity for the Arabian plate relative to the Indian plate that predicts 2-4mmyr−1 dextral motion along the Owen fracture zone. This transformfault was probably initiated around 8 million years ago in response to a regional reorganization of plate velocities and directions8-11, which induced a change in configuration of the triple junction. Infrequent earthquakes of magnitude 7 and greater may occur along the Arabia-India plate boundary, unless deformation is in the formof aseismic creep

    Neotectonics of the Owen Fracture Zone (NW Indian Ocean): structural evolution of an oceanic strike-slip plate boundary

    No full text
    International audienceThe Owen Fracture Zone is a 800 km-long fault system that accommodates the dextral strike-slip motion between India and Arabia plates. Because of slow pelagic sedimentation rates that preserve the seafloor expression of the fault since the Early Pliocene, the fault is clearly observed on bathymetric data. It is made up of a series of fault segments separated by releasing and restraining bends, including a major pull-apart basin at latitude 20°N. Some distal turbiditic channels from the Indus deep-sea fan overlap the fault system and are disturbed by its activity, thus providing landmarks to date successive stages of fault activity and structural evolution of the Owen Fracture Zone from Pliocene to Present. We determine the durability of relay structures and the timing of their evolution along the principal displacement zone, from their inception to their extinction. We observe subsidence migration in the 20°N basin, and alternate activation of fault splays in the vicinity of the Qalhat seamount. The present-day Owen Fracture Zone is the latest stage of structural evolution of the 20-Myr-old strike-slip fault system buried under Indus turbiditic deposits whose activity started at the eastern foot of the Owen Ridge when the Gulf of Aden opened. The evolution of the Owen Fracture Zone since 3-6 Myr reflects a steady state plate motion between Arabia and India, such as inferred by kinematics for the last 20 Myr period. The structural evolution of the Owen Fracture Zone since 20 Myr- including fault segments propagation and migration, pull-apart basin opening and extinction - seems to be characterized by a progressive reorganisation of the fault system, and does not require any major kinematics change

    An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes

    Get PDF
    For the analysis of neuronal cooperativity, simultaneously recorded extracellular signals from neighboring neurons need to be sorted reliably by a spike sorting method. Many algorithms have been developed to this end, however, to date, none of them manages to fulfill a set of demanding requirements. In particular, it is desirable to have an algorithm that operates online, detects and classifies overlapping spikes in real time, and that adapts to non-stationary data. Here, we present a combined spike detection and classification algorithm, which explicitly addresses these issues. Our approach makes use of linear filters to find a new representation of the data and to optimally enhance the signal-to-noise ratio. We introduce a method called “Deconfusion” which de-correlates the filter outputs and provides source separation. Finally, a set of well-defined thresholds is applied and leads to simultaneous spike detection and spike classification. By incorporating a direct feedback, the algorithm adapts to non-stationary data and is, therefore, well suited for acute recordings. We evaluate our method on simulated and experimental data, including simultaneous intra/extra-cellular recordings made in slices of a rat cortex and recordings from the prefrontal cortex of awake behaving macaques. We compare the results to existing spike detection as well as spike sorting methods. We conclude that our algorithm meets all of the mentioned requirements and outperforms other methods under realistic signal-to-noise ratios and in the presence of overlapping spikes

    Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease

    Get PDF
    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN
    corecore