1,025 research outputs found

    Integration of biocontrol agents and food-grade additives for enhancing protection of stored apples from Penicillium expansum.

    Get PDF
    Forty-nine compounds currently used as additives in foods were tested in combination with three biocontrol agents, the yeasts Rhodotorula glutinis, Cryptococcus laurentii, and the yeastlike fungus Aureobasidium pullulans, to increase their antagonistic activity against Penicillium expansum, the causal agent of blue mold on apples. Twelve additives dramatically improved the antagonistic activity of one or more of the tested biocontrol agents. In a two-way factorial experiment with these selected additives the percentage of P. expansum rots on apples was significantly influenced by the antagonist and the additive as well as by their interaction. The combination of the biocontrol agents and some additives resulted in a significantly higher activity with respect to the single treatments applied separately, producing additive or synergistic effects. Some of the selected additives combined with a low yeast concentration (106 cells per ml) had comparable or higher efficacy than the biocontrol agents applied alone at a 100-fold higher concentration (10(8) cells per ml). Some organic and inorganic calcium salts, natural gums, and some antioxidants displayed the best results. In general, the effect of each additive was specific to the biocontrol isolate used in the experiments. Possible mechanisms involved in the activity of these beneficial additives and their potential application in effective formulations of postharvest biofungicides are discussed

    C IV BAL disappearance in a large SDSS QSO sample

    Full text link
    Broad absorption lines (BALs) in the spectra of quasi-stellar objects (QSOs) originate from outflowing winds along our line of sight; winds are thought to originate from the inner regions of the QSO accretion disk, close to the central supermassive black hole (SMBH). Winds likely play a role in galaxy evolution and aid the accretion mechanism onto the SMBH. BAL equivalent widths can change on typical timescales from months to years; such variability is generally attributed to changes in the covering factor and/or in the ionization level of the gas. We investigate BAL variability, focusing on BAL disappearance. We analyze multi-epoch spectra of more than 1500 QSOs -the largest sample ever used for such a study- observed by different programs from the Sloan Digital Sky Survey-I/II/III (SDSS), and search for disappearing C IV BALs. The spectra rest-frame time baseline ranges from 0.28 to 4.9 yr; the source redshifts range from 1.68 to 4.27. We detect 73 disappearing BALs in the spectra of 67 sources. This corresponds to 3.9% of disappearing BALs, and 5.1% of our BAL QSOs exhibit at least one disappearing BAL. We estimate the average lifetime of a BAL along our line of sight (~ 80-100 yr), which appears consistent with the accretion disk orbital time at distances where winds are thought to originate. We inspect properties of the disappearing BALs and compare them to the properties of our main sample. We also investigate the existence of a correlation in the variability of multiple troughs in the same spectrum, and find it persistent at large velocity offsets between BAL pairs, suggesting that a mechanism extending on a global scale is necessary to explain the phenomenon. We select a more reliable sample of disappearing BALs following Filiz Ak et al. (2012), where a subset of our sample was analyzed, and compare the findings from the two works, obtaining generally consistent results.Comment: 22 pages, 9 figures. Accepted for publication in A&

    Integrated Nitrogen CAtchment model (INCA) applied to a tropical catchment in the Atlantic Forest, São Paulo, Brazil

    No full text
    International audienceStream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, São Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha?1 yr?1 for NO3-N and 3.85 kg.ha?1 yr?1 for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted São Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions

    SUDARE-VOICE variability-selection of Active Galaxies in the Chandra Deep Field South and the SERVS/SWIRE region

    Get PDF
    One of the most peculiar characteristics of Active Galactic Nuclei (AGN) is their variability over all wavelengths. This property has been used in the past to select AGN samples and is foreseen to be one of the detection techniques applied in future multi-epoch surveys, complementing photometric and spectroscopic methods. In this paper, we aim to construct and characterise an AGN sample using a multi-epoch dataset in the r band from the SUDARE-VOICE survey. Our work makes use of the VST monitoring program of an area surrounding the Chandra Deep Field South to select variable sources. We use data spanning a six month period over an area of 2 square degrees, to identify AGN based on their photometric variability. The selected sample includes 175 AGN candidates with magnitude r < 23 mag. We distinguish different classes of variable sources through their lightcurves, as well as X-ray, spectroscopic, SED, optical and IR information overlapping with our survey. We find that 12% of the sample (21/175) is represented by SN. Of the remaining sources, 4% (6/154) are stars, while 66% (102/154) are likely AGNs based on the available diagnostics. We estimate an upper limit to the contamination of the variability selected AGN sample of about 34%, but we point out that restricting the analysis to the sources with available multi-wavelength ancillary information, the purity of our sample is close to 80% (102 AGN out of 128 non-SN sources with multi-wavelength diagnostics). Our work thus confirms the efficiency of the variability selection method in agreement with our previous work on the COSMOS field; in addition we show that the variability approach is roughly consistent with the infrared selection.Comment: Published in A & A, 15 pages, 6 figure

    Optically variable active galactic nuclei in the 3 yr VST survey of the COSMOS field

    Get PDF
    The analysis of the variability of active galactic nuclei (AGNs) at different wavelengths and the study of possible correlations among different spectral windows are nowadays a major field of inquiry. Optical variability has been largely used to identify AGNs in multivisit surveys. The strength of a selection based on optical variability lies in the chance to analyze data from surveys of large sky areas by ground-based telescopes. However the effectiveness of optical variability selection, with respect to other multiwavelength techniques, has been poorly studied down to the depth expected from next generation surveys. Here we present the results of our r-band analysis of a sample of 299 optically variable AGN candidates in the VST survey of the COSMOS field, counting 54 visits spread over three observing seasons spanning > 3 yr. This dataset is > 3 times larger in size than the one presented in our previous analysis (De Cicco et al. 2015), and the observing baseline is ~8 times longer. We push towards deeper magnitudes (r(AB) ~23.5 mag) compared to past studies; we make wide use of ancillary multiwavelength catalogs in order to confirm the nature of our AGN candidates, and constrain the accuracy of the method based on spectroscopic and photometric diagnostics. We also perform tests aimed at assessing the relevance of dense sampling in view of future wide-field surveys. We demonstrate that the method allows the selection of high-purity (> 86%) samples. We take advantage of the longer observing baseline to achieve great improvement in the completeness of our sample with respect to X-ray and spectroscopically confirmed samples of AGNs (59%, vs. ~15% in our previous work), as well as in the completeness of unobscured and obscured AGNs. The effectiveness of the method confirms the importance to develop future, more refined techniques for the automated analysis of larger datasets.Comment: 21 pages, 10 figures; accepted for publication in A&

    Global phase time and path integral for the Kantowski--Sachs anisotropic univers

    Full text link
    The action functional of the anisotropic Kantowski--Sachs cosmological model is turned into that of an ordinary gauge system. Then a global phase time is identified for the model by imposing canonical gauge conditions, and the quantum transition amplitude is obtained by means of the usual path integral procedure of Fadeev and Popov.Comment: 11 page

    Istallazione di una stazione per la rivelazione continua Radon mediante spettrometria alfa nella Solfatara di Pozzuoli

    Get PDF
    INGV (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli - Osservatorio Vesuviano)Published1-221.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveN/A or not JCRrestricte

    Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample

    Get PDF
    This is the second paper of a series in which we present measurements of the Supernova (SN) rates from the SUDARE survey. In this paper, we study the trend of the SN rates with the intrinsic colours, the star formation activity and the mass of the parent galaxies. We have considered a sample of about 130000 galaxies and a SN sample of about 50 events. We found that the SN Ia rate per unit mass is higher by a factor of six in the star-forming galaxies with respect to the passive galaxies. The SN Ia rate per unit mass is also higher in the less massive galaxies that are also younger. These results suggest a distribution of the delay times (DTD) less populated at long delay times than at short delays. The CC SN rate per unit mass is proportional to both the sSFR and the galaxy mass. The trends of the Type Ia and CC SN rates as a function of the sSFR and the galaxy mass that we observed from SUDARE data are in agreement with literature results at different redshifts. The expected number of SNe Ia is in agreement with the observed one for all four DTD models considered both in passive and star-forming galaxies so we can not discriminate between different progenitor scenarios. The expected number of CC SNe is higher than the observed one, suggesting a higher limit for the minimum progenitor mass. We also compare the expected and observed trends of the SN Ia rate with the intrinsic U - J colour of the parent galaxy, assumed as a tracer of the age distribution. While the slope of the relation between the SN Ia rate and the U - J color in star-forming galaxies can be reproduced well by all four DTD models considered, only the steepest of them is able to account for the rates and colour in star-forming and passive galaxies with the same value of the SN Ia production efficiency.Comment: A& A accepte
    • …
    corecore