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• Chloride trends in northern U.S. urban
streams are computed.

• The rate of chloride concentration in-
crease outpaced urbanization from 1990
to 2011.

• The greatest chloride concentration in-
crease was during the winter.

• Increasing chloride concentration trends
were observed in all seasons.

• Chronic water quality criteria for chloride
were exceeded for extended durations.
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Chloride concentrations in northern U.S. included in this study have increased substantially over timewith aver-
age concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the north-
ern U.S. Historical datawere examined for 30monitoring sites on 19 streams that had chloride concentration and
flow records of 18 to 49 years. Chloride concentrations inmost studied streams increased in all seasons (13 of 19
in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentra-
tions during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow
groundwater system, during thewinter and slowly released in baseflow throughout the year. Streamflowdepen-
dency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution
during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with
time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by
an average of more than 100 individual days per year during 2006–2011. The rapid rate of chloride concentration
increase in these streams is likely due to a combination of possible increased road salt application rates, increased
baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.
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1. Introduction
The impact of road salt on aquatic ecosystems continues to increase
as urban development and subsequent road salt applications increase
with time. Substantial application of road salt in the U.S. began in the
1940s increasing to an annual average of 9.6 million metric tons/yr of
NaCl-based road salt in the 1980s and 19.5 million metric tons/yr in
the last 5 years reported, ending in 2011 (Kelly and Matos, 2013). In-
creasing trends in chloride concentrations have been observed in
water bodies of the U.S. and attributed, at least in part, to road salt influ-
ence. These trends have included rivers (Godwin et al., 2003; Interlandi
and Crockett, 2003; Thunqvist, 2004; Kaushal et al., 2005; Kelly et al.,
2012a), groundwater (Reisch and Toran, 2013; Kelly, 2008; Perera
et al., 2009; Cassanelli and Robbins, 2013), inland lakes (Ramstack
et al., 2004; Novotny and Stefan, 2010; Müller and Gächter, 2012), and
even water bodies as large as the Laurentian Great Lakes (Chapra
et al., 2009, 2012).

Elevated salt concentrations in surface waters can exert an adverse
effect on aquatic organisms (Cañedo-Argüelles et al., 2013). The U.S. En-
vironmental Protection Agency (USEPA) ambient water quality criteria
for chloride (when associated with sodium) defines the chronic criteri-
on as a 4-day average concentration exceeding 230 mg/L and the acute
criterion as a 1-h average concentration exceeding 860 mg/L (U.S.
Environmental Protection Agency, 1988). Given the sensitivity of fresh-
water organisms to chloride, exceedances of these criteria have the po-
tential to affect a substantial number of species (U.S. Environmental
Protection Agency, 1988). In a thorough assessment of the environmen-
tal impacts of road salt, Environment Canada estimated that 5%of aquat-
ic species would be affected at chloride concentrations of 210 mg/L and
10% of aquatic species would be affected at chloride concentrations of
240 mg/L for chronic exposures (Environment Canada, 2001). Multiple
studies have observed chloride concentrations greater than these
benchmark concentrations in streams as a result of road salt runoff.
These studies have included local (Ruth, 2003; Trowbridge et al.,
2010; Allert et al., 2012; Morgan et al., 2012), regional (Kelly et al.,
2012b), and national geographic scopes (Corsi et al., 2010).

Urban land cover in the U.S. has also increased over time from an es-
timated 61,000 km2 in 1945 to 247,000 km2 in 2007 (Nickerson et al.,
2011). With urban land cover projected to continue increasing (Alig
et al., 2004), applications of road salt for deicing impervious surfaces
are also likely to increase. Adding to the current and past water quality
issues resulting from the salinization of streams, including road salt run-
off, an analysis of water quality in the northeastern U.S. predicted that
many surface waters in that area of the country would not be potable
for human consumption and would become toxic to freshwater life
within the next century (Kaushal et al., 2005).

The primary objectives of this study were to define temporal trends
in chloride concentrations in the context of chloride dependency on
streamflow rates, compare temporal chloride trends among seasons,
and compare these trends to changes in urban land cover, aquatic life
criteria, and road salt sales patterns. Trend analysis was done using
the modern water quality trend modeling technique that controlled
for streamflow rate and season to help avoid confounding results due
to natural variability (Hirsch et al., 2010).
2. Methods

2.1. Site selection

An initial focus for 14 sites on 3 streams in theMilwaukeemetropol-
itan area was conducted. To assess the broader geographic impact, 11
additional streams in urban areas of the northern U.S. were studied, 4
streams in northern areas with little urban impact were studied, and
one stream in an urban area of the southern U.S. was studied as a
warm-climate reference.
Sites were initially chosen based on proximity to areas of urban in-
fluence in the northern U.S. (Fig. 1, Table 1). Three sites with a low de-
gree of urbanization in northeast Wisconsin and one site in Oregon
were included to evaluate non-urban influence, and the Trinity River
in Texas was also examined as a non-deicing reference site in an
urban area. Second, adequate data availability for modeling was neces-
sary. Most sites had 200 or more chloride observations and 20 or more
years of record with no significant gaps in data collection (i.e., larger
than 5 years), and sample representation during all seasons throughout
the water quality record (Table S1). The exceptions include five sites that
had between 151 and 194 observations, and one site that had a 6-yr gap.
These sites were included to maintain adequate geographic representa-
tion of sites (Table S1). Sites located within or just downstream from
large lakes or impoundments were omitted. A continuous record of
streamflow data concurrent with the chloride record was required at
the selected site or at a nearby site on the same stream. Sites selected in
the Milwaukee metropolitan area were chosen from a dense network of
available sites in an effort to adequately represent changes in theMilwau-
kee, Menomonee, and Kinnickinnic Rivers.
2.2. Data sources

Chloride data were obtained from the Milwaukee Metropolitan
Sewerage District (MMSD), the Wisconsin Department of Natural Re-
sources (WDNR), and the Water Quality Portal (WQ portal; http://
www.waterqualitydata.us/), which includes data from the USGS Na-
tionalWater Information System (NWIS) and EPA STOrage and RETriev-
al Data Warehouse (STORET). Coordinate bounding boxes were used to
query theWQPortal to locate streams inmetropolitan areas of primarily
the northern U.S. with sufficient data (Fig. 1).Where data from different
sources overlapped at common sites, data were combined except for
one site where data from one of the sources were not considered valu-
able due to many duplicate data points and data differences that called
into question analytical results.

If available, streamflowdata from the USGSNationalWater Informa-
tion System (http://waterdata.usgs.gov/nwis) were retrieved from the
same location where chloride samples were collected; otherwise, data
from a nearby location(s) on the same stream were scaled by drainage
area to estimate streamflow at the chloride sampling location. In two
cases, there were data gaps in streamflow that were estimated using
an ordinary least squares regression with streamflow data from a near-
by site (Meno 70th, R2 = 0.65; Milw Cedarburg, R2 = 0.95).

Road salt sales data were compiled from an annual reporting of His-
torical Statistics for Mineral and Material Commodities in the United
States (Kelly andMatos, 2013) and used as a proxy for assessing overall
road salt applications in the studied watersheds. Road salt sales were
used in place of actual application numbers due to the complicated na-
ture of gathering road salt application data from all municipalities and
private applicators on the scale of this study.

Daily snowfall data for eight weather stations in the U.S. were re-
trieved from the National Climate Data Center (http://www.ncdc.noaa.
gov/cdo-web/) for evaluation of snowfall changes throughout the
study period (Table S2). Stations were chosen based on proximity of
chloride study sites and availability of data during the study period.

Land cover composition and other watershed characteristics were de-
termined from several published GIS datasets and provided in Table 1,
and methods are described in Supplemental Information.
2.3. Data analysis

Data analysis included water quality trend modeling, graphical
analysis of trends, and exploration of modeling results in comparison
to land use, the USEPA water quality criterion, and road salt sales in
the U.S.

http://www.waterqualitydata.us/
http://www.waterqualitydata.us/
http://waterdata.usgs.gov/nwis
http://www.ncdc.noaa.gov/cdo-web/
http://www.ncdc.noaa.gov/cdo-web/
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Fig. 1. Study site locations and watershed characteristics.
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2.3.1. Rationale for water quality modeling technique
Chloride concentrations in streams have the potential to vary de-

pending on several factors that all arise from the nature of the contam-
ination sources, transport characteristics, and hydrologic characteristics
of a given watershed. Considerations when attempting to understand
these influential factors are very similar to those outlined previously
describing potentially influential factors in stream nutrient concentra-
tions and fluxes (Hirsch et al., 2010). The primary considerations are
as follows: As urban development continues, sources of nonpoint pollu-
tion such as road salt application tend to increase as well, so it is logical
to expect chloride concentrations in streams to changewith time. Given
that road salt is applied only during cold-weather periods, seasonal
differences in chloride concentrations are also expected. The nature of
road salt transport to surface waters causes chloride concentrations to
change with streamflow. For example, when road salt melts ice and
snow during periods of low streamflow, stream chloride concentrations
can become very high, but when road salt runoff periods are coincident
with high-streamflow periods resulting from snowmelt or rainfall
events, chloride concentrations are likely to be lower due to the larger
amounts of water available to dilute the road salt.

Long-term changes in chloride concentrations from road salt can fol-
low a variety of temporal patterns responding to factors such as: the
rate of urban development, changes in road salt application practices,
long-term storage and release processes from large water bodies and
groundwater, and changing climate conditions. Other major sources
include treated wastewater as well as fertilizer and livestock, with
other minor sources also contributing (Kelly et al., 2012b). These influ-
ences led to the use of WRTDS, a data analysis technique that can de-
scribe long-term change in a flexible manner (not simply as linear or
quadratic time trends) and account for the seasonal- and streamflow-
related dependencies which may, themselves, be changing over a peri-
od of many years or decades (Hirsch et al., 2010). The WRTDS analysis
used here is implemented within the EGRET package (Hirsch and De
Cicco, 2014) in the R statistical language (R Development Core Team,
2008).

2.3.2. Modeling water quality changes
The WRTDS method is based on weighted linear regression to esti-

mate daily concentration throughout time, discharge (streamflow),
and seasonal dimensions of the data used to calibrate the model. For
any given estimation point in the data domain (where the point is de-
fined by year, season and streamflow) themodel gives increasedweight
to values similar in time, streamflow, and season to the estimation
point. For example, concentrations of samples collected in year two of
a sample period will have little influence on model estimates for year
10, concentrations of samples collected during low flow periods will
have little influence on model estimates for high flow, and concentra-
tions of samples collected during summer will have little influence on
model estimates for winter periods. Weighting for proximity of the
estimation point to the observed data by time (the time distance),



Table 1
Watershed characteristics of study sites.

Metropolitan Drainage Percent land cover in 2006 Percent land cover in 1992c

Site name State Area Short Name area (km2) Urbana Agriculturala Forest/
othera

% Imperviousb Urban Agricultural Forest/
other

Milwaukee River at Pioneer Rd near
Cedarburg

WI Milwaukee Milw Cedarburg 1555 11.0 56.2 32.8 2.9 9.6 58.5 31.9

Milwaukee River at Brown Deer Rd WI Milwaukee Milw Brown Deer 1674 12.7 54.9 32.4 3.4 11.1 57.4 31.5
Milwaukee River at Estabrook Park WI Milwaukee Milw 1785 17.5 51.4 31.0 5.6 16.0 53.9 30.1
Milwaukee River at Wells St WI Milwaukee Milw Wells 1808 18.5 50.8 30.7 6.3 17.0 53.3 29.8
Milwaukee River at Jones Island at
Mouth at Milwaukee

WI Milwaukee Milw Jones 2240 29.2 43.8 27.0 11.3 27.1 46.7 26.2

Menomonee River at County Line
Road

WI Milwaukee Meno County 79 30.1 46.2 23.7 10.0 24.5 53.0 22.4

Menomonee River at 127th St WI Milwaukee Meno 127th 153 52.0 28.5 19.4 17.8 43.0 37.7 19.3
Menomonee River at Hampton Ave WI Milwaukee Meno Hampton 211 51.0 29.6 19.4 18.6 43.3 37.7 19.0
Menomonee River at 70th St Bridge
at Wauwatosa

WI Milwaukee Meno 70th 318 65.1 20.0 14.9 24.7 59.4 26.1 14.5

Menomonee River at 25th St WI Milwaukee Meno 25th 355 68.6 17.9 13.5 27.9 63.5 23.4 13.1
Kinnickinnic River at S 27th St WI Milwaukee KK 27th 45 99.0 0.0 1.0 49.8 98.8 0.4 0.8
Kinnickinnic River at S 7th St WI Milwaukee KK 7th 53 98.2 0.0 1.8 50.3 98.1 0.4 1.5
Kinnickinnic River at 1st St WI Milwaukee KK 1st 63 98.5 0.0 1.5 50.5 98.4 0.3 1.3
Kinnickinnic River at Jones Island
Ferry

WI Milwaukee KK Jones 69 98.0 0.0 2.0 51.6 97.8 0.3 1.9

Root River at Racine, WI WI Racine Root 480 29.8 52.7 17.4 10.0 26.0 52.8 21.2
Peshtigo River at Peshtigo, WI WI Rural Peshtigo 2872 4.3 15.5 80.3 0.4 4.6 14.3 81.1
Oconto River near Oconto, WI WI Rural Oconto 2473 4.9 21.8 73.4 0.5 5.2 21.2 73.6
Sheboygan River at Sheboygan, WI WI Rural Sheboygan 1103 8.1 64.7 27.2 2.2 7.7 66.6 25.7
Rock River at Afton, WI WI Janesville Rock 8661 11.3 65.6 23.1 3.2 10.0 66.7 23.3
Willamette River at Portland, OR OR Rural Willamette 28,967 7.3 20.4 72.2 2.6 6.9 20.6 72.4
Des Plaines River at Riverside, IL IL Chicago Des Plaines 1643 63.8 18.8 17.4 27.5 60.0 22.0 18.0
Fox River at Algonquin, IL IL Chicago Fox 3601 24.8 45.2 30.0 7.0 21.8 47.3 31.0
Poplar Creek at Elgin, IL IL Chicago Poplar 92 67.9 7.5 24.6 26.5 62.0 15.0 22.9
Cherry Creek at Denver, CO CO Denver Cherry 1063 21.7 0.6 77.7 6.9 15.9 0.7 83.4
Clinton River at Moravian Drive at
Mt. Clemens, MI

MI Detroit Clinton 1937 52.3 19.9 27.8 20.0 49.7 23.0 27.3

Cuyahoga River at Independence, OH OH Cleveland Cuyahoga 1836 39.8 17.4 42.8 10.9 34.1 20.7 45.3
Schuylkill River at Philadelphia, PA PA Philadelphia Schuylkill 4888 24.2 29.7 46.1 6.4 18.6 39.1 42.3
Patuxent River near Bowie, MD MD Columbia Patuxent 906 31.9 26.4 41.8 8.7 20.0 44.1 35.9
Potomac River at Chain Bridge, at
Washington, DC

DC Washington, DC Potomac 29,967 10.1 29.6 60.3 2.1 8.3 32.1 59.6

Trinity River below Dallas, TX TX Dallas Trinity 16,224 22.3 14.4 63.3 7.9 19.3 15.8 64.9

a Watershed urban, agriculture, and forest/other percentages for 2006 were determined from the National Land Cover Database 2006 Land Cover dataset (Fry et al., 2011).
b Watershed impervious percentages for 2006 were determined from the National Land Cover Database 2006 Percent Developed Imperviousness dataset (Fry et al., 2011).
c Watershed urban, agriculture, and forest/other percentages for 1992 were determined from the National Land Cover Database 1992/2001 Retrofit Land Cover Change dataset (Fry et al.,

2009).
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streamflow (the discharge distance), and season (the seasonal distance)
are assigned using a tricube weight function with half-window widths
of 10 years, 2 natural log units, and 0.5 years in the time, streamflow,
and seasonal dimensions respectively. These values were chosen after
experimentation of the smallest values that did not cause unrealistic os-
cillations. The overall weight on any given observation is the product of
the three weights. Estimation by the WRTDS model was performed
using measured chloride and corresponding daily streamflow values.
This tool has not previously been used to examine chloride trends, but
applications using WRTDS have primarily been used for examination
of nutrients (Hirsch et al., 2010;Medalie et al., 2012; Green et al., 2014).
2.3.3. Examination of water quality changes
One type of output produced using WRTDS for each of the study

locations was graphics showing estimated concentrations for three
levels of streamflow (the 10, 50, and 90 percentile points on the daily
streamflow frequency distribution), four seasons of the year (centered
on February 15 [winter], May 15 [spring], August 15 [summer], and
November 15 [fall]), and each year of the period of record. Another
type of output is a contour plot of the differences in estimated chloride
concentration between the years 1981 and 2010 as a function of time-
of-year and streamflow. WRTDS was also used to compute flow-
normalized annual chloride concentrations over the period of record.
Flow-normalization is a technique that removes the effect of year-to-
year variations in streamflow (but not seasonal variations) on average
chloride concentrations (Hirsch et al., 2010).

Linear regression was used to explore the response of flow-
normalized annual chloride concentrations as well as the number of in-
dividual days that these concentrations exceeded the USEPA water
quality (exceedance days) to the percent of urban land cover in the
watershed. Linear temporal regression was also used to compare the
change in national road salt sales in the U.S. to the change in urban
land cover in the northern U.S. to coincide with the location of most
road salt sales in the U.S. The calculation of expected number of exceed-
ance days was determined using logistic regression based on the output
of the WRTDS model for the two periods 1990–1994 and 2006–2010.
These dates were chosen based on the inclusion of at least 20 years,
while minimizing the number of sites that had to be excluded due to
missing data. The non-deicing reference site (Trinity River) and seiche-
affected sites (Milw Jones, KK 1st, KK Jones) were not used in these anal-
yses. The period of record did not have sufficient data between 1990 and
2011 for the Clinton, Cuyahoga, and Fox River, so these sites were not in-
cluded in these analyses. Dates for the Schuylkill and Des Plaines Rivers
did not match perfectly, but were near enough to provide an estimate
for the later time period. The WRTDS method has been extended here
to estimate the daily probability of exceedance of a threshold. Because
theWRTDS model provides a conditional mean and conditional variance
of concentration for each day as a function of streamflow, time of year,
and year (trend) it is possible to compute a conditional probability of



492 S.R. Corsi et al. / Science of the Total Environment 508 (2015) 488–497
exceedance of the threshold under the assumption that the conditional
distribution of concentration is log-normal. Using these results from all
of the sites, logistic regressionswerefit for eachof the two5-year timepe-
riods. These logistic regression models estimate the daily probability of
exceedance at a site as a function the square root of the percent of thewa-
tershed that was urbanized during that time period. The number of pre-
dicted exceedances per year was then determined by summing these
probabilities for the year. These calculations were implemented in R
using the betareg function. Pseudo R-squared values for both models
were approximately 0.83.

3. Results

Three major watersheds cover the bulk of the Milwaukee metro-
politan area: the Milwaukee River, the Menomonee River, and the
Kinnickinnic River. These three watersheds have all experienced in-
creased chloride concentrations from 1980 to 2010 during winter,
spring, summer, and fall (Fig. 2). The greatest increases in chloride
concentrations were in watersheds with the greatest urban land
cover percentage. Concentrations for the Milwaukee study sites
were greatest in the Kinnickinnic River followed by the Menomonee
River and then the Milwaukee River (drainage areas of 45, 355, and
1808 km2, with 99, 68.6, and 18.5% urban land cover respectively).

In addition, chloride concentrations increased with decreasing
streamflow for all three of these watersheds in each of the four sea-
sons. Themean chloride concentration in theMilwaukee River exceeded
140mg/L duringwinter low flow periods andwas approaching 100mg/L
during summer low-flow periods toward the end of the study period.
Mean chloride concentrations in theMenomonee andKinnickinnic Rivers
exceeded the USEPA chronicwater quality criteria of 230mg/L during the
winter and spring at all three flow rates in the latter years of the study,
and exceeded 100 mg/L during summer and fall periods at all three
streamflow rates toward the end of the study duration.

Similar four-season graphs illustrating streamflow dependency for
all remaining study sites except those impacted by backwater influ-
ences from LakeMichigan (hereafter referred to as seiche) are provided
in the supporting information (Figs. S1–S25). Chloride concentrations
also increased over all four seasons and decreased with streamflow at
all of these additional sites except three with a few notable exceptions:
Chloride concentrations at the Peshtigo River had increasing trends over
the course of the study period, but concentrations did not increase with
decreasingflow; concentrationswere relatively constant in theWillam-
ette River. Both of these sites have primarily forested land cover and lit-
tle urban influence. With these watershed conditions, there is likely to
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in the Trinity River is warm enough that road salt application is not
common.

Notable differences were observed among sites with lowwatershed
imperviousness in the Midwest U.S. (Rock River; Milwaukee River at
Cedarburg, which is upstream from the Milwaukee metropolitan area;
and the Sheboygan River) versus those outside of the Midwest (Potomac
and Willamette Rivers).

Sites with low imperviousness in the Midwest have higher chloride
concentrations, when comparedwith sites in other areas of the country.
Sites with low imperviousness in these different regions also show no-
table differences in non-urban land cover types; whereas the Midwest
sites have large proportions of agricultural land, sites in other regions
were dominated by forest and natural areas (Table 1). Concentrations
at seiche-affected sites on the Milwaukee and Kinnickinnic Rivers also
increased, but the magnitude of these trends was typically muted in
comparison with upstream, non-seiche affected sites. Chloride concen-
trations were lower at study sites with the lowest percent impervious
watersheds (less than 0.5%), but increasing trends were still apparent
in winter and summer seasons.

Flow-normalized chloride concentration estimates from theWRTDS
modelwere comparedwith urban land cover in the contributingwater-
shed as 5-yrmeans for 1990–1994 and 2006–2010 (Fig. 5-A). Therewas
a linear relation between mean concentration and percent urban land
cover for both time periods, but regression slopes indicated a change
in this relation over time with slopes for these regression equations in-
dicating an increase in chloride concentration of 2.9 and 5.8 mg/L/%
urban land cover for the 1990–94 and 2006–10 time periods respective-
ly. Concentrations from 2006 to 2010 were approximately double the
concentrations for 1990–1994 for the same percentage of urban land
cover.

The logistic models for the probability of water quality criteria ex-
ceedance as a function of the square root of the percent of urban land
cover in thewatershedwere significantly different (p b 0.001) between
the two periods (1990–1994 and 2006–2010; Fig. 5-B). For a watershed
with 25% urban area, the expected number of days exceeding 230 mg/L
per year increased from 5 to 14, and for a watershed with 90% urban
area, it increased from 95 to 231 days per year. An expected value of
17 days exceeding 230 mg/L per year decreased from 50% to 29%
urban land cover, and an expected value of 95 exceedance days per
year decreased from 95% to 63% urban land cover. About 29% of sites
studied exceeded the concentration for theUSEPA chronicwater quality
criteria of 230 mg/L by an average of more than 100 individual days per
year during 2006–2011. All regression slopes in Fig. 5 were significant
with p b 0.001, and R2 values for all regressions ranged between 0.83
and 0.99. Slopes were significantly different in each of the analyses rep-
resented in Fig. 5 (p b 0.001 for panels A and B and p b 0.05 for panel C).

Beginning in 1987 and ending in 2010, road salt sales in the U.S. in-
creased at an average rate of 3.9%/yr, and urban land cover in the north-
ern part of the U.S. increased at a rate of 2.8%/yr (Fig. 5-C). These trends
indicate that road salt usage increased at a rate 40% greater than the in-
crease in urban land cover in the northern U.S. during this period.

4. Discussion

4.1. Temporal trends and relation with land use

Results of the present research indicate that chloride concentrations
increasedwith time inmost streams studied in the northernU.S. through-
out the study period. While there were trends present in streams with
watersheds dominated by urban, agriculture, and forest/natural areas
alike, there was a clear increase in concentration as urban land cover
(and impervious surfaces) in the watershed increased.

The concentration increase in watersheds with relatively small
amounts of urban land use may be influenced by road salt, but may
also be a result of other sources such as agricultural runoff which is an-
other potentially important source of chlorides in rural watersheds
(Mullaney et al., 2009). Still, the greater winter concentrations suggest
that road salt was an important factor in observed trends in the rural
watersheds. In contrast with the Midwest sites, which are more highly
developed for agriculture, requiring a more extensive road network,
the Potomac and Willamette River watersheds have larger percent for-
est and natural areas (60% and 72% respectively). A detailed watershed-
specific investigation would be needed to better understand relative
contributions in these rural sites.

The rate of chloride concentration increase outpaced that of urbani-
zation for this study, so urban land cover information alone cannot ac-
count for these chloride trends. This changing relation of chloride with
urban land cover over time (Fig. 5-A) may be attributed to several po-
tential factors. First, it is possible that more salt was applied per unit
urban area during the latter portion of the study period than during
the early portion. This appears likely given that road salt sales in the
northern U.S. outpaced the rate of increase in urban land cover by 40%
during the study period (Fig. 5-C). More salt could be applied per unit
area due to three primary reasons: 1) the application rate could have
increased as an attempt to maintain more ice-free conditions; 2) the
density of impervious area per unit urban area could have increased,
thereby increasing the need for road salt, or 3) the difference inweather
conditions between the early and latter portions of the study could have
warranted different application rates.

Second, the baseline concentrations have been increasing over time
due to continued road salt input to the shallowgroundwater systemand
inability of the system to recover to true background concentrations be-
fore the next deicing season begins. The result is an increase in baseline
concentrations from shallow groundwater discharge to the stream dur-
ing low flow, as indicated by increasing summer concentrations. Since
baseline concentrations increased with time over the course of the
study, less additional road salt runoff was needed to reach concentra-
tions of concern in the later years of the study than in the early years, ef-
fectively changing the slope of the chloride to urban land cover relation.
With baseline concentrations governed by groundwater discharges in
many instances, this finding is consistent with other research that has
observed elevated chloride concentrations in groundwater which has
caused elevated stream concentrations (Kelly, 2008; Eyles et al., 2013).

To explore the possibility of changing weather patterns as potential
explanation of increased salt application, snowfall data were examined
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represents 230 mg/L (A).
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for nine NationalWeather Servicemonitoring stations ranging geograph-
ically from Washington, D.C., to Denver, Colorado (Table S2, supporting
information). For each station, the average total annual snowfall and the
average annual number of individual days with snow exceeding 20 mm
were computed as a measure of potential for road salt application. An in-
crease in the annual number of dayswith snowexceeding20mmwasob-
served at five stations, and a decrease was observed at four stations. An
increase in annual snowfall was observed at six stations, and a decrease
was observed at three stations. These data indicated a potentially mixed
influence ofweather on road salt applications among chloridemonitoring
sites. Given that 23 of the 30 streamsiteswere located in theMidwest, the
result that data from all four weather stations in the Midwest had in-
creased annual snowfall (average increase of 16%) and days with greater
than 20 mm of snow (average increase of 13%) indicated a potential for
road salt application increase due to snowfall conditions. In contrast,
two of four weather stations in the eastern part of the country had de-
creased annual snowfall (average overall decrease of 11%) and three of
four weather stations had decreased days with greater than 20 mm of
snow (average overall decrease of 23%) indicating a potential for road
salt application decrease due to snowfall conditions. Snowfall (annual
depth and days with greater than 20mm) in Denver, Colorado decreased
bymore than40%.Despite themixed trends in snowrecords, streamchlo-
ride concentrations increased in each of these three areas of the country,
suggesting that increasing baseline concentrations and possible increas-
ing application rates due to factors other than snow cover contribute to
the changing relation of chloride with urban land cover over time. Since
weather patterns and road salt application methods are locally variable,
it would be valuable to extend this study in future research by examining
the overall concentrations and the baseline concentrationswith respect to
precipitation and total salt application on an individual watershed basis.

Given the increasing road salt sales per unit area of urban land cover
in the U.S., the increasing baseline chloride concentrations during sum-
mer periods, and the difference in snow conditions, it appears multiple
factors could plausibly be contributors to the changing relation between
average chloride concentrations and urban land cover within the
watershed.

4.2. Seasonality

Increasing chloride trends were present all year, including seasons
that do not require deicer application; however, the highest concentra-
tions occurred during winter periods. A similar year-round influence
has been noted multiple times in previous research (Williams et al.,
2000; Kelly, 2008; Perera et al., 2013). This non-deicing season effect
has been attributed to salt infiltrating into the shallow groundwater sys-
tem thereby serving as a “reservoir” of salt that is slowly discharged into
streams as baseflow. Relatively slow travel times in the shallow ground-
water system could account for the time lag between deicer applica-
tions and eventual discharge into the stream.

4.3. Streamflow dependency

Chloride concentrations commonly increased with decreasing
streamflow throughout all seasons of the year in most streams studied.
The same relation has previously been observed in streams of Illinois
(Kelly et al., 2010) and Toronto (Meriano et al., 2009). This behavior
can be explained primarily by the factors that govern hydrology
throughout the year. During cold-weather months, road salt applica-
tions occur during many types of precipitation events. These include a
gradient of precipitation forms ranging from purely snowfall events to
mixed rainfall and snowfall events to purely rainfall events when freez-
ing temperatures are expected. Precipitationwith very little or no liquid
precipitation provide little dilution of road salt as it melts snow and ice
and eventually drains to nearby streams. These are also low-flow pe-
riods, so the stream itself provides little dilution. The combination of
these two factors results in high chloride concentrations in the streams.
Conversely, during deicing events with greater quantities of liquid pre-
cipitation, more dilution of the road salt is provided directly from the
precipitation. In addition, when snow is present on the ground, melting
is enhanced by contact with rainfall, streamflow is elevated, and dilu-
tion potential in the stream is greater. These high-dilution events still
have elevated chloride concentrations, but not as high as the low-
dilution events.

During non-deicing months, chloride concentrations also decreased
with increasing streamflow. Precipitation events again serve to dilute
chloride concentrations more than those during low-flow periods that
are dominated by groundwater discharge, which is a substantial source
of chloride during the non-deicing months.

4.4. Comparison to aquatic toxicity benchmarks

Elevated chloride concentrations resulting from road salt application
and runoff in watersheds have potential impacts on aquatic organisms
(U.S. Environmental Protection Agency, 1988; Environment Canada,
2001). Increasing trends over time have resulted in increasing
exceedances of concentrations that are likely to be harmful to aquat-
ic life. The current research indicates that the relation between urban
land cover and the number of daily exceedances of the USEPA chronic
water quality criteria concentration of 230 mg/L has changed during the
study period (Fig. 5). The number of exceedances for a particular percent
of urban land cover was greater during the latter portion of the study as
compared to the early portion of the study. As described above for in-
creasing concentrations, an increase in road salt application rates over
time, an increase in the baseline concentrations as indicated by summer
chloride trends, and changes in snowfall are likely causes of the increased
water quality criterion exceedance rate.

Previous research has indicated that degradation of biological integ-
rity is evident beginning below 1% impervious area (Stepenuck et al.,
2002; Cuffney et al., 2010; King et al., 2010). Results from thepresent re-
search are consistent with these findings as chloride concentrations
began to increase as soon as urban land cover was present, and concen-
trations exceeded the chronic water quality criterion beginning at
approximately 10% impervious area (approximately 25% urban land
cover; Table 1, Fig. 5). A review of road salt effects conducted by Envi-
ronment Canada concluded that high concentrations of chloride may
have immediate or long-term effects on ecosystem populations and
that lower concentrations may have adverse effects on community
structure, diversity, and productivity (Environment Canada, 2001).
Studies reviewed for this Environment Canada effort found that some
of the biological components affected included densities of bacteria
and algae, drift of stream benthic invertebrates, as well as diversity
and community structure of aquatic invertebrates (Evans and Frick,
2001). Other work has determined that elevated chloride concentra-
tions can also influence reproduction of aquatic organisms (Beggel
and Geist, 2015). All of this information is primarily based on direct in-
fluence from chloride exposures, but indirect exposures caused by mo-
bilization of heavy metals may also have impacts on aquatic organisms
(Amrhein et al., 1992; Bäckström et al., 2004; Nelson et al., 2009). These
chloride influences are yet another stressor in addition to those com-
monly thought to impact biological integrity of urban streams such as
hydraulic and hydrologic factors, degraded water quality from point
and non-point source runoff, and altered habitat and stream channels
(Walsh et al., 2005; Steuer et al., 2010).

The multi-season impacts presented in this research suggest the pos-
sibility of extended-duration, high-concentration exposure to chloride in
urban streams of the northern U.S. This possibility appears credible given
that extended-duration (multiple months), high-concentration expo-
sures to chlorides have previously been documented in urban streams re-
ceiving road salt runoff (Corsi et al., 2010; Baldwin et al., 2012; Kelly et al.,
2012b). Further work to define concentration–duration relations is war-
ranted given that the current USEPA chronic water quality criterion is de-
signed for a 4-day exposure period, and it appears that exposures have
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potential to bemuch longer than 4 days. Longer-duration exposures may
result in additional impacts on the full life-cycle of aquatic organisms that
may not be evident with common evaluation methods.

4.5. Salt management and alternatives

The nature of salt presence in environmentalwatersmakes this issue
very difficult to address with common stormwater management prac-
tices that rely most commonly on settling or filtration of particulate
matter (Waschbusch, 1999; Greb et al., 2000; Horwatich et al., 2011).
Since salt dissolves readily in water, these types of management prac-
tices will not remove salt from runoff. The only reliable way to reduce
the impact of road salt on receiving streams is to reduce applications.
There are a host of techniques that have been identified and document-
ed for reduction of road salt application. For example, many municipal-
ities have salt management plans that include a strategy for minimizing
road salt usage. Some of these practices include training programs for
most effective use, pre-wetting of granular salt tomaximize salt retention
on paved surfaces, applicators that are calibrated and vary by ground-
speed, anti-icing that reduces bonding between snow and pavement
and makes plowing more effective, and more efficient predictions of
icing conditions to inform deicing activities (Kramberger and Zerovnik,
2008; Fay et al., 2013). In addition, there are a number of alternative
chemicals that have been used. These alternative chemicals commonly
include other chloride-containing salts such as magnesium chloride or
calcium chloride, organic salts such as calciummagnesium acetate, potas-
sium acetate, or sodium acetate, different variations of salt brines, and
organic deicers such as glycols. Unfortunately, none of these options
are without potential environmental impact as well. All of these al-
ternative deicers have varying degrees of associated aquatic toxicity
(Environment Canada, 2001). In addition, organic chemicals used as
deicers have an additional impact from increased biochemical oxy-
gen demand (Corsi et al., 2012) and excessive biofilm growth
(Mericas et al., 2014). Still, road salt is more common than the alter-
natives due to the performance effectiveness and relatively low cost
compared to alternatives.

5. Conclusions

The U.S. is an urbanizing nation, and with increasing development,
previous data and results from this research indicate that road salt ap-
plications, chloride concentrations, and resulting adverse impacts on
aquatic organisms in streams are likely to increase along with urban
development. This research indicates that chloride concentrations in
urban streams of the northern U.S. and resulting water quality criteria
exceedances have increased at a greater rate than the rate of urban
development. In addition, elevated chloride concentrations in these
streams through all seasons have implications on long-term exposures
to chloride for aquatic organisms. Results of this research provide veri-
fication that chloride concentrations in urban streams continue to in-
crease, influencing the potential for aquatic life in affected streams.
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