9,508 research outputs found

    Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm

    Get PDF
    We show that every orthogonal polyhedron homeomorphic to a sphere can be unfolded without overlap while using only polynomially many (orthogonal) cuts. By contrast, the best previous such result used exponentially many cuts. More precisely, given an orthogonal polyhedron with n vertices, the algorithm cuts the polyhedron only where it is met by the grid of coordinate planes passing through the vertices, together with Theta(n^2) additional coordinate planes between every two such grid planes.Comment: 15 pages, 10 figure

    Lightweight Call-Graph Construction for Multilingual Software Analysis

    Full text link
    Analysis of multilingual codebases is a topic of increasing importance. In prior work, we have proposed the MLSA (MultiLingual Software Analysis) architecture, an approach to the lightweight analysis of multilingual codebases, and have shown how it can be used to address the challenge of constructing a single call graph from multilingual software with mutual calls. This paper addresses the challenge of constructing monolingual call graphs in a lightweight manner (consistent with the objective of MLSA) which nonetheless yields sufficient information for resolving language interoperability calls. A novel approach is proposed which leverages information from a compiler-generated AST to provide the quality of call graph necessary, while the program itself is written using an Island Grammar that parses the AST providing the lightweight aspect necessary. Performance results are presented for a C/C++ implementation of the approach, PAIGE (Parsing AST using Island Grammar Call Graph Emitter) showing that despite its lightweight nature, it outperforms Doxgen, is robust to changes in the (Clang) AST, and is not restricted to C/C++.Comment: 10 page

    Real-time dynamic articulations in the 2-D waveguide mesh vocal tract model

    Get PDF
    Time domain articulatory vocal tract modeling in one-dimensional (1-D) is well established. Previous studies into two-dimensional (2-D) simulation of wave propagation in the vocal tract have shown it to present accurate static vowel synthesis. However, little has been done to demonstrate how such a model might accommodate the dynamic tract shape changes necessary in modeling speech. Two methods of applying the area function to the 2-D digital waveguide mesh vocal tract model are presented here. First, a method based on mapping the cross-sectional area onto the number of waveguides across the mesh, termed a widthwise mapping approach is detailed. Discontinuity problems associated with the dynamic manipulation of the model are highlighted. Second, a new method is examined that uses a static-shaped rectangular mesh with the area function translated into an impedance map which is then applied to each waveguide. Two approaches for constructing such a map are demonstrated; one using a linear impedance increase to model a constriction to the tract and another using a raised cosine function. Recommendations are made towards the use of the cosine method as it allows for a wider central propagational channel. It is also shown that this impedance mapping approach allows for stable dynamic shape changes and also permits a reduction in sampling frequency leading to real-time interaction with the model

    Spontaneous currents in a bosonic ring

    Get PDF
    Nonequilibrium dynamics of noninteracting bosons in a one-dimensional ring-shaped lattice is studied by means of the Kinetic Monte Carlo method. The system is approximated by the classical XY model (the kinetic term is neglected) and then the simulations are performed for the planar classical spins. We study the dynamics that follows a finite-time quench to zero temperature. If the quench is slow enough the system can equilibrate and finally reaches the ground state with uniform spin alignment. However, we show that if the quench is faster than the relaxation rate, the system can get locked in a current-carrying metastable state characterized by a nonzero winding number. We analyze how the zero-temperature state depends on the quench rate.Comment: 6 pages, 3 figure

    The Dentist and the Missions

    Get PDF

    Thermal robustness of multipartite entanglement of the 1-D spin 1/2 XY model

    Full text link
    We study the robustness of multipartite entanglement of the ground state of the one-dimensional spin 1/2 XY model with a transverse magnetic field in the presence of thermal excitations, by investigating a threshold temperature, below which the thermal state is guaranteed to be entangled. We obtain the threshold temperature based on the geometric measure of entanglement of the ground state. The threshold temperature reflects three characteristic lines in the phase diagram of the correlation function. Our approach reveals a region where multipartite entanglement at zero temperature is high but is thermally fragile, and another region where multipartite entanglement at zero temperature is low but is thermally robust.Comment: Revised, 11 pages, 7 figure

    Exercise redox biochemistry:conceptual, methodological and technical recommendations

    Get PDF
    Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded which often complicate attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling
    corecore