6,872 research outputs found
A Project Based Approach to Statistics and Data Science
In an increasingly data-driven world, facility with statistics is more
important than ever for our students. At institutions without a statistician,
it often falls to the mathematics faculty to teach statistics courses. This
paper presents a model that a mathematician asked to teach statistics can
follow. This model entails connecting with faculty from numerous departments on
campus to develop a list of topics, building a repository of real-world
datasets from these faculty, and creating projects where students interface
with these datasets to write lab reports aimed at consumers of statistics in
other disciplines. The end result is students who are well prepared for
interdisciplinary research, who are accustomed to coping with the
idiosyncrasies of real data, and who have sharpened their technical writing and
speaking skills
The interminable issue of effectiveness: substantive purposes, outcomes and research challenges in the advancement of environmental impact assessment theory
Discovery of a supernova associated with GRB 031203: SMARTS Optical-Infrared Lightcurves from 0.2 to 92 days
Optical and infrared monitoring of the afterglow site of gamma-ray burst
(GRB) 031203 has revealed a brightening source embedded in the host galaxy,
which we attribute to the presence of a supernova (SN) related to the GRB ("SN
031203"). We present details of the discovery and evolution of SN 031203 from
0.2 to 92 days after the GRB, derived from SMARTS consortium photometry in I
and J bands. A template type Ic lightcurve, constructed from SN 1998bw
photometry, is consistent with the peak brightness of SN 031203 although the
lightcurves are not identical. Differential astrometry reveals that the SN, and
hence the GRB, occurred less than 300 h_71^-1 pc (3-sigma) from the apparent
galaxy center. The peak of the supernova is brighter than the optical afterglow
suggesting that this source is intermediate between a strong GRB and a
supernova.Comment: 11 pages, 3 figures, submitted to ApJ Letter
Experimentally Constrained Molecular Relaxation: The Case of Glassy GeSe2
An ideal atomistic model of a disordered material should contradict no
experiments,and should also be consistent with accurate force fields (either
{\it ab initio}or empirical). We make significant progress toward jointly
satisfying {\it both} of these criteria using a hybrid reverse Monte Carlo
approach in conjunction with approximate first principles molecular dynamics.
We illustrate the method by studying the complex binary glassy material
g-GeSe. By constraining the model to agree with partial structure factors
and {\it ab initio} simulation, we obtain a 647-atom model in close agreement
with experiment, including the first sharp diffraction peak in the static
structure factor. We compute the electronic state densities and compare to
photoelectron spectroscopies. The approach is general and flexible.Comment: 6 pages, 4 figure
The EPICS Software Framework Moves from Controls to Physics
The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world
How was it for you? Experiences of participatory design in the UK health service
Improving co-design methods implies that we need to understand those methods, paying attention to not only the effect of method choices on design outcomes, but also how methods affect the people involved in co-design. In this article, we explore participants' experiences from a year-long participatory health service design project to develop ‘Better Outpatient Services for Older People’. The project followed a defined method called experience-based design (EBD), which represented the state of the art in participatory service design within the UK National Health Service. A sample of participants in the project took part in semi-structured interviews reflecting on their involvement in and their feelings about the project. Our findings suggest that the EBD method that we employed was successful in establishing positive working relationships among the different groups of stakeholders (staff, patients, carers, advocates and design researchers), although conflicts remained throughout the project. Participants' experiences highlighted issues of wider relevance in such participatory design: cost versus benefit, sense of project momentum, locus of control, and assumptions about how change takes place in a complex environment. We propose tactics for dealing with these issues that inform the future development of techniques in user-centred healthcare design
GRB 050408: An Atypical Gamma-Ray Burst as a Probe of an Atypical Galactic Environment
The bright GRB 050408 was localized by HETE-II near local midnight, enabling
an impressive ground-based followup effort as well as space-based followup from
Swift. The Swift data from the X-Ray Telescope (XRT) and our own optical
photometry and spectrum of the afterglow provide the cornerstone for our
analysis. Under the traditional assumption that the visible waveband was above
the peak synchrotron frequency and below the cooling frequency, the optical
photometry from 0.03 to 5.03 days show an afterglow decay corresponding to an
electron energy index of p_lc = 2.05 +/- 0.04, without a jet break as suggested
by others. A break is seen in the X-ray data at early times (at ~12600 sec
after the GRB). The spectral slope of the optical spectrum is consistent with
p_lc assuming a host-galaxy extinction of A_V = 1.18 mag. The optical-NIR
broadband spectrum is also consistent with p = 2.05, but prefers A_V = 0.57
mag. The X-ray afterglow shows a break at 1.26 x 10^4 sec, which may be the
result of a refreshed shock. This burst stands out in that the optical and
X-ray data suggest a large H I column density of N_HI ~ 10^22 cm^-2; it is very
likely a damped Lyman alpha system and so the faintness of the host galaxy (M_V
> -18 mag) is noteworthy. Moreover, we detect extraordinarily strong Ti II
absorption lines with a column density through the GRB host that exceeds the
largest values observed for the Milky Way by an order of magnitude.
Furthermore, the Ti II equivalent width is in the top 1% of Mg II
absorption-selected QSOs. This suggests that the large-scale environment of GRB
050408 has significantly lower Ti depletion than the Milky Way and a large
velocity width (delta v > 200 km/s).Comment: ApJ submitte
Boolean delay equations on networks: An application to economic damage propagation
We introduce economic models based on Boolean Delay Equations: this formalism
makes easier to take into account the complexity of the interactions between
firms and is particularly appropriate for studying the propagation of an
initial damage due to a catastrophe. Here we concentrate on simple cases, which
allow to understand the effects of multiple concurrent production paths as well
as the presence of stochasticity in the path time lengths or in the network
structure.
In absence of flexibility, the shortening of production of a single firm in
an isolated network with multiple connections usually ends up by attaining a
finite fraction of the firms or the whole economy, whereas the interactions
with the outside allow a partial recovering of the activity, giving rise to
periodic solutions with waves of damage which propagate across the structure.
The damage propagation speed is strongly dependent upon the topology. The
existence of multiple concurrent production paths does not necessarily imply a
slowing down of the propagation, which can be as fast as the shortest path.Comment: Latex, 52 pages with 22 eps figure
- …
