1,315 research outputs found

    Identification of an Abelson murine leukemia virus-encoded protein present in transformed fibroblast and lymphoid cells

    Get PDF
    Extracts from lymphoid and fibroblast cell lines transformed by Abelson murine leukemia virus (A-MuLV) contain a protein of molecular weight 120,000 (P120). Immunoprecipitation with specific sera shows that P120 contains regions homologous to the 5'-terminal segment of the MULV gag gene complex--p15, p12, and at least part of p30--but lacks detectable determinants of p10, reverse transcriptase, and the envelope glycoprotein. P120 is phosphorylated and has an intracellular half-life of 3--6 hr. In vitro translation of virion RNA from A-MuLV, with Moloney MuLV as helper, yields a product of molecular weight 120,000 with serological reactivity similar to that of the cellular P120. Translation of the RNA from the helper gave no P120. P120 is expressed in all lymphoid and fibroblastic cell lines we have tested that were transformed by A-MuLV but is not detectable in a lymphoid line in which the A-MuLV genome was established by infection but was not responsible for the transformation. Expression of P120 is selectively retained in clones of A-MuLV-transformed lymphocytes that convert to a nonproducer state after loss of expression of helper MuLV intracellular precursors. These results suggest that the P120 product of the A-MuLV genome may be responsible for maintenance of the transformed phenotype of lymphoid and fibroblast cells transformed by the virus

    Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder

    Get PDF
    Mammalian microRNAs are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the miR-155–induced GM populations displayed pathological features characteristic of myeloid neoplasia. Of possible relevance to human disease, miR-155 was found to be overexpressed in the bone marrow of patients with certain subtypes of acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress

    Broad protection against influenza infection by vectored immunoprophylaxis in mice

    Get PDF
    Neutralizing antibodies that target epitopes conserved among many strains of influenza virus have been recently isolated from humans. Here we demonstrate that adeno-associated viruses (AAV) encoding two such broadly neutralizing antibodies are protective against diverse influenza strains. Serum from mice that received a single intramuscular AAV injection efficiently neutralized all H1, H2 and H5 influenza strains tested. After infection with diverse strains of H1N1 influenza, treated mice showed minimal weight loss and lung inflammation. Protection lasted for at least 11 months after AAV injection. Notably, even immunodeficient and older mice were protected by this method, suggesting that expression of a monoclonal antibody alone is sufficient to protect mice from illness. If translated to humans, this prophylactic approach may be uniquely capable of protecting immunocompromised or elderly patient populations not reliably protected by existing vaccines

    MicroRNA-155 is induced during the macrophage inflammatory response

    Get PDF
    The mammalian inflammatory response to infection involves the induction of several hundred genes, a process that must be carefully regulated to achieve pathogen clearance and prevent the consequences of unregulated expression, such as cancer. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that has also been linked to cancer. However, the relationship between inflammation, innate immunity, and miRNA expression is just beginning to be explored. In the present study, we use microarray technology to identify miRNAs induced in primary murine macrophages after exposure to polyriboinosinic:polyribocytidylic acid or the cytokine IFN-{beta}. miR-155 was the only miRNA of those tested that was substantially up-regulated by both stimuli. It also was induced by several Toll-like receptor ligands through myeloid differentiation factor 88- or TRIF-dependent pathways, whereas up-regulation by IFNs was shown to involve TNF-{alpha} autocrine signaling. Pharmacological inhibition of the kinase JNK blocked induction of miR-155 in response to either polyriboinosinic:polyribocytidylic acid or TNF-{alpha}, suggesting that miR-155-inducing signals use the JNK pathway. Together, these findings characterize miR-155 as a common target of a broad range of inflammatory mediators. Importantly, because miR-155 is known to function as an oncogene, these observations identify a potential link between inflammation and cancer

    NF-κB dysregulation in microRNA-146a–deficient mice drives the development of myeloid malignancies

    Get PDF
    MicroRNA miR-146a has been implicated as a negative feedback regulator of NF-κB activation. Knockout of the miR-146a gene in C57BL/6 mice leads to histologically and immunophenotypically defined myeloid sarcomas and some lymphomas. The sarcomas are transplantable to immunologically compromised hosts, showing that they are true malignancies. The animals also exhibit chronic myeloproliferation in their bone marrow. Spleen and marrow cells show increased transcription of NF-κB–regulated genes and tumors have higher nuclear p65. Genetic ablation of NF-κB p50 suppresses the myeloproliferation, showing that dysregulation of NF-κB is responsible for the myeloproliferative disease

    T cell antigen discovery via signaling and antigen-presenting bifunctional receptors

    Get PDF
    CD8^+ T cells recognize and eliminate tumors in an antigen-specific manner. Despite progress in characterizing the antitumor T cell repertoire and function, the identification of target antigens remains a challenge. Here we describe the use of chimeric receptors called signaling and antigen-presenting bifunctional receptors (SABRs) in a cell-based platform for T cell receptor (TCR) antigen discovery. SABRs present an extracellular complex comprising a peptide and major histocompatibility complex (MHC), and induce intracellular signaling via a TCR-like signal after binding with a cognate TCR. We devised a strategy for antigen discovery using SABR libraries to screen thousands of antigenic epitopes. We validated this platform by identifying the targets recognized by public TCRs of known specificities. Moreover, we extended this approach for personalized neoantigen discovery

    MicroRNA expression as risk biomarker of breast cancer metastasis : a pilot retrospective case-cohort study

    Get PDF
    Background: MicroRNAs (miRNAs) are small, non-coding RNA molecules involved in post-transcriptional gene regulation and have recently been shown to play a role in cancer metastasis. In solid tumors, especially breast cancer, alterations in miRNA expression contribute to cancer pathogenesis, including metastasis. Considering the emerging role of miRNAs in metastasis, the identification of predictive markers is necessary to further the understanding of stage-specific breast cancer development. This is a retrospective analysis that aimed to identify molecular biomarkers related to distant breast cancer metastasis development. Methods: A retrospective case cohort study was performed in 64 breast cancer patients treated during the period from 1998-2001. The case group (n = 29) consisted of patients with a poor prognosis who presented with breast cancer recurrence or metastasis during follow up. The control group (n = 35) consisted of patients with a good prognosis who did not develop breast cancer recurrence or metastasis. These patient groups were stratified according to TNM clinical stage (CS) I, II and III, and the main clinical features of the patients were homogeneous. MicroRNA profiling was performed and biomarkers related to metastatic were identified independent of clinical stage. Finally, a hazard risk analysis of these biomarkers was performed to evaluate their relation to metastatic potential. Results: MiRNA expression profiling identified several miRNAs that were both specific and shared across all clinical stages (p <= 0.05). Among these, we identified miRNAs previously associated with cell motility (let-7 family) and distant metastasis (hsa-miR-21). In addition, hsa-miR-494 and hsa-miR-21 were deregulated in metastatic cases of CSI and CSII. Furthermore, metastatic miRNAs shared across all clinical stages did not present high sensitivity and specificity when compared to specific-CS miRNAs. Between them, hsa-miR-183 was the most significative of CSII, which miRNAs combination for CSII (hsa-miR-494, hsa-miR-183 and hsa-miR-21) was significant and were a more effective risk marker compared to the single miRNAs. Conclusions: Women with metastatic breast cancer, especially CSII, presented up-regulated levels of miR-183, miR-494 and miR-21, which were associated with a poor prognosis. These miRNAs therefore represent new risk biomarkers of breast cancer metastasis and may be useful for future targeted therapies.We thank the Researcher Support Center of Barretos Cancer Hospital, especially the statistician Zanardo C. for assisting in the statistical analysis.This study received financial support from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Fapesp, Proc: 10/ 16796-0, Sao Paulo, Brazil)

    Computational modelling of NF-κB activation by IL-1RI and its co-receptor TILRR, predicts a role for Cytoskeletal Sequestration of IκBα in inflammatory signalling.

    Get PDF
    The transcription factor NF-κB (nuclear factor kappa B) is activated by Toll-like receptors and controlled by mechanotransduction and changes in the cytoskeleton. In this study we combine 3-D predictive protein modelling and in vitro experiments with in silico simulations to determine the role of the cytoskeleton in regulation of NF-κB. Simulations used a comprehensive agent-based model of the NF-κB pathway, which includes the type 1 IL-1 receptor (IL-1R1) complex and signalling intermediates, as well as cytoskeletal components. Agent based modelling relies on in silico reproductions of systems through the interactions of its components, and provides a reliable tool in investigations of biological processes, which require spatial considerations and involve complex formation and translocation of regulatory components. We show that our model faithfully reproduces the multiple steps comprising the NF-κB pathway, and provides a framework from which we can explore novel aspects of the system. The analysis, using 3-D predictive protein modelling and in vitro assays, demonstrated that the NF-κB inhibitor, IκBα is sequestered to the actin/spectrin complex within the cytoskeleton of the resting cell, and released during IL-1 stimulation, through a process controlled by the IL-1RI co-receptor TILRR (Toll-like and IL-1 receptor regulator). In silico simulations using the agent-based model predict that the cytoskeletal pool of IκBα is released to adjust signal amplification in relation to input levels. The results suggest that the process provides a mechanism for signal calibration and enables efficient, activation-sensitive regulation of NF-κB and inflammatory responses

    Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries.

    Get PDF
    Globally, group B Streptococcus (GBS) remains the leading cause of sepsis and meningitis in young infants, with its greatest burden in the first 90 days of life. Intrapartum antibiotic prophylaxis (IAP) for women at risk of transmitting GBS to their newborns has been effective in reducing, but not eliminating, the young infant GBS disease burden in many high income countries. However, identification of women at risk and administration of IAP is very difficult in many low and middle income country (LMIC) settings, and is not possible for home deliveries. Immunization of pregnant women with a GBS vaccine represents an alternate pathway to protecting newborns from GBS disease, through the transplacental antibody transfer to the fetus in utero. This approach to prevent GBS disease in young infants is currently under development, and is approaching late stage clinical evaluation. This manuscript includes a review of the natural history of the disease, global disease burden estimates, diagnosis and existing control options in different settings, the biological rationale for a vaccine including previous supportive studies, analysis of current candidates in development, possible correlates of protection and current status of immunogenicity assays. Future potential vaccine development pathways to licensure and use in LMICs, trial design and implementation options are discussed, with the objective to provide a basis for reflection, rather than recommendations
    corecore