552 research outputs found

    The unsuitability of html-based colour charts for estimating animal colours - a comment on Berggren and Merilä (2004)

    Get PDF
    BACKGROUND: A variety of techniques are used to study the colours of animal signals, including the use of visual matching to colour charts. This paper aims to highlight why they are generally an unsatisfactory tool for the measurement and classification of animal colours and why colour codes based on HTML (really RGB) standards, as advocated in a recent paper, are particularly inappropriate. There are many theoretical arguments against the use of colour charts, not least that human colour vision differs markedly from that of most other animals. However, the focus of this paper is the concern that, even when applied to humans, there is no simple 1:1 mapping from an RGB colour space to the perceived colours in a chart (the results are both printer- and illumination-dependent). We support our criticisms with data from colour matching experiments with humans, involving self-made, printed colour charts. RESULTS: Colour matching experiments with printed charts involving 11 subjects showed that the choices made by individuals were significantly different between charts that had exactly the same RGB values, but were produced from different printers. Furthermore, individual matches tended to vary under different lighting conditions. Spectrophotometry of the colour charts showed that the reflectance spectra of the charts varied greatly between printers and that equal steps in RGB space were often far from equal in terms of reflectance on the printed charts. CONCLUSION: In addition to outlining theoretical criticisms of the use of colour charts, our empirical results show that: individuals vary in their perception of colours, that different printers produce strikingly different results when reproducing what should be the same chart, and that the characteristics of the light irradiating the surface do affect colour perception. Therefore, we urge great caution in the use of colour charts to study animal colour signals. They should be used only as a last resort and in full knowledge of their limitations, with specially produced charts made to high industry standards

    Orientation to the sun by animals and its interaction with crypsis

    Get PDF
    1. Orientation with respect to the sun has been observed in a wide range of species and hasgenerally been interpreted in terms of thermoregulation and/or ultraviolet (UV) protection. For countershaded animals, orientation with respect to the sun may also result from the pres-sure to exploit the gradient of coloration optimally to enhance crypsis.2. Here, we use computational modelling to predict the optimal countershading pattern for anoriented body. We assess how camouflage performance declines as orientation varies using acomputational model that incorporates realistic lighting environments.3. Once an optimal countershading pattern for crypsis has been chosen, we determineseparately how UV protection/irradiation and solar thermal inflow fluctuate with orientation.4. We show that body orientations that could optimally use countershading to enhance crypsisare very similar to those that allow optimal solar heat inflow and UV protection.5. Our findings suggest that crypsis has been overlooked as a selective pressure on orientationand that new experiments should be designed to tease apart the respective roles of these different selective pressures. We propose potential experiments that could achieve this

    Leadership Practices in Similar Schools with Varying Primary Grade Reading Outcomes: A Comparative Multiple-Case Study

    Get PDF
    Students who are below grade level before they leave third grade are less likely to graduate. A large number of schools are failing to increase student achievement in reading, especially for students of color and those who are economically disadvantaged. Leadership can influence student achievement; however, literature lacks specifics about leadership practices that could help school leaders improve student outcomes. This multiple-case study explores the leadership practices in three similar elementary schools with varying primary grade reading outcomes and contributes details about the leadership functions of Setting Direction, Developing People and Redesigning the Organization (Leithwood, Seashore, Anderson, & Wahlstrom, 2004). The findings suggest that a strong focus on literacy in primary grades (early literacy) and on a specific instructional practice for reading provides coherence for leadership practices which enhances both leadership and instruction

    Endogenous transforming growth factor β1 suppresses inflammation and promotes survival in adult CNS

    Get PDF
    Transforming growth factor β1 (TGFβ1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGFβ1 and the effects of TGFβ1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGFβ1-deficient mice, this study was performed on a T- and B-cell-deficient RAG2-/- background. Compared with wild-type siblings, homozygous deletion of TGFβ1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [αXβ2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGFβ1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), α6β1, and αMβ2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGFβ1 also caused an ∼10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain. Copyright © 2007 Society for Neuroscience

    The Association between Urban Public Transport Infrastructure and Social Equity and Spatial Accessibility within the Urban Environment: An Investigation of Tramlink in London

    Get PDF
    The pursuit of sustainability has been at the forefront of contemporary planning initiatives. However, most recent research has focused on the environmental and economic aspects of developing sustainable urban environment, whilst largely neglecting the social aspects. Contemporary political thinking in the UK often disregards the potential of the urban infrastructure to improve social equity. The aim of this study was to analyse the impact of transport infrastructure on a variety of social measures, in an empirical and ideologically unbiased fashion, using both quantitative and qualitative methods. We selected “Tramlink” as a case study: a light-rail system in the London Borough of Croydon which began operation in 2000. We used quantitative methods, including advanced spatial statistics, to produce a more detailed analysis of social equity than has been previously published. This acknowledges that determining localised issues can produce more informed and effective policy interventions. Our results demonstrate that the physical properties of transport infrastructure and the non-physical attributes of society, in combination, help to create opportunities for individuals to succeed. We also find that in order to reduce the negative effects of austerity, public money could be more effectively spent if diverted to areas that are most in need which can be highlighted through localised investigations

    False holes as camouflage

    Get PDF
    Long noted by naturalists, leaf mimicry provides some of the most impressive examples of camouflage through masquerade. Many species of leaf-mimicking Lepidoptera also sport wing markings that closely resemble irregularly shaped holes caused by decay or insect damage. Despite proposals that such markings can either enhance resemblance to damaged leaves or act to disrupt surface appearance through false depth cues, to our knowledge, no attempt has been made to establish exactly how these markings function, or even whether they confer a survival benefit to prey. Here, in two field experiments using artificial butterfly-like targets, we show that false hole markings provide significant survival benefits against avian predation. Furthermore, in a computer-based visual search experiment, we demonstrate that detection of such targets by humans is impeded in a similar fashion. Equally contrasting light marks do not have the same effect; indeed, they lead to increased detection. We conclude that the mechanism is the disruption of the otherwise homogeneous wing surface (surface disruptive camouflage) and that, by resembling the holes sometimes found in real leaves, the disruptive benefits are not offset by conspicuousness costs.Funding provided by: Engineering and Physical Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000266Award Number: EP/M006905/

    Optimizing countershading camouflage

    Get PDF

    Three-dimensional camouflage:exploiting photons to conceal form

    Get PDF
    Many animals have a gradation of body color, termed “countershading,” where the areas that are typically exposed to more light are darker. One hypothesis is that this patterning enhances visual camouflage by making the retinal image of the animal match that of the background, a fundamentally two-dimensional theory. More controversially, countershading may also obliterate cues to three-dimensional (3D) shape delivered by shading. Despite relying on distinct cognitive mechanisms, these two potential functions hitherto have been amalgamated in the literature. It has previously not been possible to validate either hypothesis empirically, because there has been no general theory of optimal countershading that allows quantitative predictions to be made about the many environmental parameters involved. Here we unpack the logical distinction between using countershading for background matching and using it to obliterate 3D shape. We use computational modeling to determine the optimal coloration for the camouflage of 3D shape. Our model of 3D concealment is derived from the physics of light and informed by perceptual psychology: we simulate a 3D world that incorporates naturalistic lighting environments. The model allows us to predict countershading coloration for terrestrial environments, for any body shape and a wide range of ecologically relevant parameters. The approach can be generalized to any light distribution, including those underwater
    corecore