53 research outputs found

    Leishmania major isolates in experimental murine pathogenicity and specific immune response

    Get PDF
    Virulence variability was investigated by analyzing the experimental pathogenicity of 18 Leishmania major strains in susceptible BALB/c mice. Ten strains were isolated from Sudan patients with zoonotic cutaneous leishmaniasis; eight strains were isolated in Syria (n = 1), Saudi Arabia (n = 2), Jordan (n = 3), or Iran (n = 2). BALB/c mice were injected in the hind footpad with 2 � 106 amastigotes of the various isolates, and lesion progression was recorded weekly for 9 weeks. Interleukin-4 (IL-4) and gamma interferon (IFN- ã) production of lymph node mononuclear cells activated in vitro with parasite antigens were evaluated 5 weeks after infection. We show that disease progression induced by different L. major isolates was largely heterogeneous although reproducible results were obtained when using the same isolate. Interestingly, isolates from the Middle East induced a more severe disease than did the majority of Tunisian isolates. Strains with the highest virulence tend to generate more IL-4 and less IFN-ã in vitro at week 5 postinfection as well as higher levels of early IL4 mRNA in the lymph node draining the inoculation site at 16h postinfection. These results suggest that L. major isolates from the field may differ in virulence, which influences the course of the disease induced in mice and the type of immune response elicited by the infected host. © Global Science Publications

    Recombinant forms of Leishmania amazonensis excreted/secreted promastigote surface antigen (PSA) induce protective immune responses in dogs

    Get PDF
    International audiencePreventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombi-nant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21-and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recom-binant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates

    Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice

    Full text link
    Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasisThe study was supported in Spain by grants from Ministerio de Ciencia e Innovación FIS PI11/00095 and FISPI14/00366 from the Instituto de Salud Carlos III within the Network of TropicalDiseases Research (VI P I+D+I 2008-2011, ISCIII -Subdirección General de Redes y Centros de Investigación Cooperativa (RD12/0018/0009)). This work was also supported in Brazil by a grant from CNPq (Ciencia sem Fronteiras-PVE 300174/2014-4). A CBMSO institutional grant from Fundación Ramón Areces is also acknowledged. EAFC is a grant recipient of CNPq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites

    Get PDF
    Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+ influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect

    In Vitro Evaluation of a Soluble Leishmania Promastigote Surface Antigen as a Potential Vaccine Candidate against Human Leishmaniasis

    Get PDF
    International audiencePSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in severalLeishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice.We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in aL. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L.braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals weresubdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantuminfection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high orlow levels of IFN-c in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detectedin sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-c, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-a in more. No significant cytokine response wasobserved in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increasein CD4+ T cells producing IFN-c after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between thepercentage of IFN-c-producing CD4+ T cells and the released IFN-c. We showed that the LaPSA-38S protein was able toinduce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infectionindicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacityof Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infectio

    Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Full text link
    All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE

    Identification of a Disulfide Isomerase Protein of Leishmania major as a Putative Virulence Factor

    No full text
    Several approaches have been previously used to elucidate the genetic basis of Leishmania virulence. In general, they were based on laboratory Leishmania clones genetically modified or grown in the presence of selecting agents. In a previous study, we demonstrated that Leishmania major freshly isolated from human cutaneous lesions showed significant differences in the severity of the experimental disease induced in BALB/c mice. Here, using the mRNA differential display technique, we analyzed gene expression in L. major promastigotes showing different levels of virulence. We have identified a novel Leishmania gene encoding a 477-amino-acid protein exhibiting two distinct regions that are identical to the putative active-site sequence (CGHC) of the eukaryotic protein disulfide isomerase (PDI). The recombinant protein displayed a specific PDI enzymatic activity. This L. major disulfide isomerase protein (LmPDI) is predominantly expressed, at both the mRNA and protein levels, in highly virulent strains. Specific PDI inhibitors abolished the enzymatic activity of the recombinant protein and profoundly affected parasite growth. These findings suggest that LmPDI may play an important role in Leishmania natural pathogenicity and may constitute a new target for anti-Leishmania chemotherapy
    corecore