258 research outputs found

    Shear coordinate description of the quantised versal unfolding of D_4 singularity

    Full text link
    In this paper by using Teichmuller theory of a sphere with four holes/orbifold points, we obtain a system of flat coordinates on the general affine cubic surface having a D_4 singularity at the origin. We show that the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere coincides with the Etingof-Ginzburg Poisson bracket on the affine D_4 cubic. We prove that this bracket is the image under the Riemann-Hilbert map of the Poisson Lie bracket on the direct sum of three copies of sl_2. We realise the action of the mapping class group by the action of the braid group on the geodesic functions . This action coincides with the procedure of analytic continuation of solutions of the sixth Painlev\'e equation. Finally, we produce the explicit quantisation of the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere and of the braid group action.Comment: 14 pages, 2 picture

    Extension of geodesic algebras to continuous genus

    Get PDF
    Using the Penner--Fock parameterization for Teichmuller spaces of Riemann surfaces with holes, we construct the string-like free-field representation of the Poisson and quantum algebras of geodesic functions in the continuous-genus limit. The mapping class group acts naturally in the obtained representation.Comment: 16 pages, submitted to Lett.Math.Phy

    Quantum Teichmuller theory and representations of the pure braid group

    Full text link
    We adapt some of the methods of quantum Teichm\"uller theory to construct a family of representations of the pure braid group of the sphere.Comment: 15 pages. Several typos corrected. To appear in Communications in Contemporary Mathematic

    Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach

    Get PDF
    We solve the loop equations of the β\beta-ensemble model analogously to the solution found for the Hermitian matrices β=1\beta=1. For \beta=1,thesolutionwasexpressedusingthealgebraicspectralcurveofequation, the solution was expressed using the algebraic spectral curve of equation y^2=U(x).Forarbitrary. For arbitrary \beta,thespectralcurveconvertsintoaSchro¨dingerequation, the spectral curve converts into a Schr\"odinger equation ((\hbar\partial)^2-U(x))\psi(x)=0with with \hbar\propto (\sqrt\beta-1/\sqrt\beta)/N.Thispaperissimilartothesisterpaper I,inparticular,allthemainingredientsspecificforthealgebraicsolutionoftheproblemremainthesame,butherewepresentthesecondapproachtofindingasolutionofloopequationsusingsectorwisedefinitionofresolvents.Beingtechnicallymoreinvolved,itallowsdefiningconsistentlytheBcyclestructureoftheobtainedquantumalgebraiccurve(aDmoduleoftheform. This paper is similar to the sister paper~I, in particular, all the main ingredients specific for the algebraic solution of the problem remain the same, but here we present the second approach to finding a solution of loop equations using sectorwise definition of resolvents. Being technically more involved, it allows defining consistently the B-cycle structure of the obtained quantum algebraic curve (a D-module of the form y^2-U(x),where, where [y,x]=\hbar)andtoconstructexplicitlythecorrelationfunctionsandthecorrespondingsymplecticinvariants) and to construct explicitly the correlation functions and the corresponding symplectic invariants F_h,orthetermsofthefreeenergy,in1/N2, or the terms of the free energy, in 1/N^2-expansion at arbitrary \hbar. The set of "flat" coordinates comprises the potential times tkt_k and the occupation numbers \widetilde{\epsilon}_\alpha.WedefineandinvestigatethepropertiesoftheAandBcycles,formsof1st,2ndand3rdkind,andtheRiemannbilinearidentities.Weusetheseidentitiestofindexplicitlythesingularpartof. We define and investigate the properties of the A- and B-cycles, forms of 1st, 2nd and 3rd kind, and the Riemann bilinear identities. We use these identities to find explicitly the singular part of \mathcal F_0thatdependsexclusivelyon that depends exclusively on \widetilde{\epsilon}_\alpha$.Comment: 58 pages, 7 figure

    A Hint on the External Field Problem for Matrix Models

    Get PDF
    We reexamine the external field problem for N×NN\times N hermitian one-matrix models. We prove an equivalence of the models with the potentials \tr{({1/over2N}X^2 + \log X - \Lambda X)} and \sum_{k=1}^\infty t_k\tr{X^k} providing the matrix Λ\Lambda is related to {tk}\{t_k\} by t_k=\fr 1k \tr{\Lambda^{-k}}-\frac N2 \delta_{k2}. Based on this equivalence we formulate a method for calculating the partition function by solving the Schwinger--Dyson equations order by order of genus expansion. Explicit calculations of the partition function and of correlators of conformal operators with the puncture operator are presented in genus one. These results support the conjecture that our models are associated with the c=1c=1 case in the same sense as the Kontsevich model describes c=0c=0

    Matrix eigenvalue model: Feynman graph technique for all genera

    Get PDF
    We present the diagrammatic technique for calculating the free energy of the matrix eigenvalue model (the model with arbitrary power β\beta by the Vandermonde determinant) to all orders of 1/N expansion in the case where the limiting eigenvalue distribution spans arbitrary (but fixed) number of disjoint intervals (curves).Comment: Latex, 27 page

    A matrix model for the topological string II: The spectral curve and mirror geometry

    Get PDF
    In a previous paper, we presented a matrix model reproducing the topological string partition function on an arbitrary given toric Calabi-Yau manifold. Here, we study the spectral curve of our matrix model and thus derive, upon imposing certain minimality assumptions on the spectral curve, the large volume limit of the BKMP "remodeling the B-model" conjecture, the claim that Gromov-Witten invariants of any toric Calabi-Yau 3-fold coincide with the spectral invariants of its mirror curve.Comment: 1+37 page

    Partition Functions of Matrix Models as the First Special Functions of String Theory. II. Kontsevich Model

    Full text link
    In arXiv:hep-th/0310113 we started a program of creating a reference-book on matrix-model tau-functions, the new generation of special functions, which are going to play an important role in string theory calculations. The main focus of that paper was on the one-matrix Hermitian model tau-functions. The present paper is devoted to a direct counterpart for the Kontsevich and Generalized Kontsevich Model (GKM) tau-functions. We mostly focus on calculating resolvents (=loop operator averages) in the Kontsevich model, with a special emphasis on its simplest (Gaussian) phase, where exists a surprising integral formula, and the expressions for the resolvents in the genus zero and one are especially simple (in particular, we generalize the known genus zero result to genus one). We also discuss various features of generic phases of the Kontsevich model, in particular, a counterpart of the unambiguous Gaussian solution in the generic case, the solution called Dijkgraaf-Vafa (DV) solution. Further, we extend the results to the GKM and, in particular, discuss the p-q duality in terms of resolvents and corresponding Riemann surfaces in the example of dualities between (2,3) and (3,2) models.Comment: 48 pages, 2 figure
    corecore