In this paper by using Teichmuller theory of a sphere with four
holes/orbifold points, we obtain a system of flat coordinates on the general
affine cubic surface having a D_4 singularity at the origin. We show that the
Goldman bracket on the geodesic functions on the four-holed/orbifold sphere
coincides with the Etingof-Ginzburg Poisson bracket on the affine D_4 cubic. We
prove that this bracket is the image under the Riemann-Hilbert map of the
Poisson Lie bracket on the direct sum of three copies of sl_2. We realise the
action of the mapping class group by the action of the braid group on the
geodesic functions . This action coincides with the procedure of analytic
continuation of solutions of the sixth Painlev\'e equation. Finally, we produce
the explicit quantisation of the Goldman bracket on the geodesic functions on
the four-holed/orbifold sphere and of the braid group action.Comment: 14 pages, 2 picture