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Abstract

We solve the loop equations of the β-ensemble model analogously to the
solution found for the Hermitian matrices β = 1. For β = 1, the solution was
expressed using the algebraic spectral curve of equation y2 = U(x). For arbitrary
β, the spectral curve converts into a Schrödinger equation ((~∂)2−U(x))ψ(x) = 0
with ~ ∝ (

√
β−1/

√
β)/N . This paper is similar to the sister paper I, in particular,

all the main ingredients specific for the algebraic solution of the problem remain
the same, but here we present the second approach to finding a solution of
loop equations using sectorwise definition of resolvents. Being technically more
involved, it allows to define consistently the B-cycle structure of the obtained
quantum algebraic curve (a D-module of the form y2−U(x), where [y, x] = ~) and
to construct explicitly the correlation functions and the corresponding symplectic
invariants Fh, or the terms of the free energy, in 1/N2-expansion at arbitrary ~.
The set of “flat” coordinates comprises the potential times tk and the occupation
numbers ǫ̃α. We define and investigate the properties of the A- and B-cycles,
forms of 1st, 2nd and 3rd kind, and the Riemann bilinear identities. We use
these identities to find explicitly the singular part of F0 that depends exclusively
on ǫ̃α.
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1 Introduction

In the contemporary mathematical physics, one can often meet the notion of quantum

surfaces, which appears in many different aspects. Having no intension to describe

all problems in which quantization of the very space–time coordinates takes place

(which pertains mainly to string or brane models) we however stress that the main

feature of most, if not all, these models is that the consideration is commonly restricted

to simple geometries of sphere or torus. Observables in these theories are not the

coordinates, which cease to commute with each other and satisfy some postulated

quantum algebras, but objects related to representations of these algebras, because

only these objects admit classical interpretation. In this paper, we propose a new

approach to the description of these so-called “quantum surfaces,” namely we begin

with solutions of the standard one-dimensional Schrödinger equation with a polynomial

potential and construct a higher genus quantum surface (which is the analogue of a

classical hyperelliptic Riemann surface) for which we can define analogues of all the

main notions of algebraic geometry.

This paper is an “alternative version” of our paper [5] in which the notion of the

quantum algebraic geometry was introduced and which we refer to as paper I in what

1



follows. In the both versions, the origin of quantum algebraic geometry is the same,

the Schrödinger equation ((~∂)2 − U(x))ψ(x) = 0. The principal difference is that in

this, second version, we use the sectorwise definition of all the quantities starting from

the one-point resolvents, i.e., we use different solutions of the Schrödinger equation

to construct these resolvents in different Stokes sectors of the complex plane. This

enables us to define in a rigorous way the integrations over A- and B-cycles as well

as to present a self-consistent procedure for constructing the correlation functions and

the symplectic invariants.

The correlation functionsW
(h)
n (x1, . . . , xn) and the symplectic invariants Fh for any

algebraic plane curve given by a polynomial equation

E(x, y) =
∑

i,j

Ei,j xiyj = 0

were defined in [9, 12]. The invariants Fh(E) are defined in terms of algebraic geometry

quantities related to the Riemann surface of equation E(x, y) = 0. On the matrix model

side, these invariants are terms of the 1/N2- (the genus) expansion of the free energy

calculated in [4] for the one-matrix model and in [6] for the two-matrix model.

We introduce the notion of a “quantum curve” for which E(x, y) is a non-

commutative polynomial of x and y:

E(x, y) =
∑

i,j

Ei,j xi yj , [y, x] = ~. (1.1)

The notion of quantum curve is also known as D-modules, i.e., a quotient of the space

of functions by Ker E(x, y), where y = ~∂/∂x.

Our construction is based on the functions ψ(x) such that

E(x, ~∂x) · ψ(x) = 0 (1.2)

and we show that one can consistently define all the basic notion of algebraic geometry

within this construction. Whereas some objects, like branch points, become obsolete,

we can define cycles, forms, Bergman kernel, period matrix and the corresponding Abel

maps as well as other objects in a consistent way.

But, otherwise, it is striking to find that almost all relationships of classical algebraic

geometry remain unchanged when ~ 6= 0, for instance, the Riemann bilinear identity,

the modified Rauch variational formula, and the topological recursion defining the

correlation functions and the symplectic invariants.

The symplectic invariants Fh were first introduced for the solution of loop equations

arising in the 1-hermitian random matrix model [9, 4]. They were later generalized to

other hermitian multi–matrix models [6, 13].
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The models that correspond to the quantum surface are the β-ensembles classified

by the exponent β. The three Wigner ensembles (see [17], and we changed β → β/2)

correspond to β = 1 (hermitian case), β = 1/2 (real symmetric case), β = 2 (real

self-dual quaternion case), but we can easily define a β-ensemble eigenvalue model for

any real value of β as the N -fold integral of the form
∫
dλ1 · · · dλN |∆(λ)|2βe−N

√
β
∑N

j=1 V (λj)

(∆ is the Vandermonde determinant).

In [3], the solution of [9] was generalized to the β-ensembles, but the solution was

presented as a double half-infinite sum for β = O(1) at large N ,

F =

∞∑

h,k=0

N2−2h−k (
√
β − 1/

√
β)kFh,k. (1.3)

The coefficients Fh,k were computed in [3].

In this paper, as in paper I, we assume that ~ = (
√
β−1/

√
β)/N , so we perform an

(infinite) resummation in the above formula; the free-energy expansion then acquires

the standard form,

F =

∞∑

h=0

N2−2hFh(~). (1.4)

The Fh,k’s of [3] can be recovered by computing the semi-classical small ~-expansion

of Fh(~). We demonstrate that Fh(~) is the natural generalization of the symplectic

invariants of [12] for a “quantum spectral curve” E(x, y) with [y, x] = ~.

We define also analogues of the multi-point resolvents

Wn(x1, . . . , xn) = N−n

〈
N∑

j=1

(x1 − λj)
−1 · · ·

N∑

j=1

(xn − λj)
−1

〉

conn

,

where we let angular brackets denote the averaging with the weight

|∆(λ)|2βe−N
√
β
∑N

j=1 V (λj). These resolvents in turn admit the 1/N2-expansion,

Wn(x1, . . . , xn) =
∑∞

h=0N
2−2h−nW

(h)
n (x1, . . . , xn), and we calculate all the terms W

(h)
n

using the modified diagrammatic technique.

The main tool applied for studying the β-eigenvalue model is the loop equation

method. We obtain loop equations from the invariance of an integral under the special

change of variables. Loop equations for the β-eigenvalue model can be found in [7], [10],

and here we solve them order by order in 1/N2, at fixed ~.

Recently, models of this type got a new vim due to the conjecture by Alday, Gaiotto,

and Tachikawa (AGT) [1] relating Nekrasov’s instanton function [18] to conformal
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blocks of the Liouville theory; these conformal blocks in turn can be described by

the matrix-like model (see [16], [8]); the relation to the Nekrasov’s ǫ1,2 parameters is

explicit: ǫ1ǫ2 ∼ 1/N2 and ǫ1/ǫ2 ∼ β, so using the approach in this paper, we can

construct nonperturbative solutions of Nekrasov’s formulas in ǫ1/ǫ2. In this paper, we

investigate only the case of polynomial potentials, the generalization to the realistic

logarithmic potentials appearing in the AGT conjecture will follows.

The structure of the paper is as follows: we collect the generalities on the Stokes

phenomenon pertaining to solutions of the Schrödinger equation in Sec. 2. We describe

our quantum Riemann surface in Sec. 3 where we introduce A- and B-cycles, filling
fractions ǫ̃i, and the first-kind functions (analogues of holomorphic and Krichever–

Whitham meromorphic differentials) as well as the system of flat coordinates and the

Riemann period matrix. In Sec. 4, we introduce the recursion kernels and the second-

and third-kind (bi-)differentials. In Sec. 5, we go beyond the leading approximation

in 1/N2 and construct correlation functions of all orders using the Feynman-like dia-

grammatic technique. We reveal the origin of our recursion procedure in Sec. 6, where

we develop in details the variations w.r.t. the set of flat coordinates; the summary

is in Sec. 7. In the next two (completely new as compared to paper I) sections, we

investigate the link to the β-ensemble models (Sec. 8) and construct on the base of

this analysis the free-energy terms (Sec. 9). In the first three appendixes to the paper,

we present proofs of the three main theorems of Sec. 5 concerning properties of the

correlation functions whereas the fourth appendix contains the new formula expressing

F0 through the filling fractions ǫ̃i; in the matrix model approach, the singular term

has the structure 1
2
ǫ̃2i log ǫ̃i whereas in the quantum geometry this term is proportional

to
∫
log Γ(ǫ̃i), which is the first actual example of calculations in the case of quantum

Riemann surfaces.

2 Schrödinger equation and resolvents

2.1 Solutions of the Schrödinger equation

We begin with the Schrödinger equation

~2ψ′′(x) = U(x)ψ(x) (2.1)

with U(x) being a polynomial of even degree 2d for which we define the polynomial

“potential” V (x) of degree d+ 1 to be

V ′(x) = 2 (
√
U)+ =

d∑

k=0

tk+1 x
k (2.2)
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We also define the polynomial of degree d− 1,

P (x) =
V ′2(x)

4
− U(x)− ~

V ′′(x)

2
. (2.3)

Eventually, we define:

t0 = lim
x→∞

xP (x)

V ′(x)
(2.4)

In the matrix model language (see section 8), t1, . . . , td+1 are called the times associated

to the potential V (x), t0 is the normalized total number of eigenvalues (particles), or

the temperature, whereas the remaining coefficients of P are defined by introducing

fixed “filling fractions” ǫi below.

2.1.1 Stokes Sectors

A function ψ(x) that is a solution of the Schrödinger equation exhibits the Stokes

phenomenon, i.e., although ψ(x) is an entire function, its asymptotics are discon-

tinuous near ∞ where it has an essential singularity. Let θ0 = Arg(td+1) be the

argument of the leading coefficient of the potential V (x). We define the Stokes

half-lines the asymptotic directions along which ReV (x) vanishes asymptotically,

Lk =
{
x / Arg(x) = − θ0

d+1
+ π

k+ 1
2

d+1

}
, together with the corresponding Stokes sectors:

Sk =

{
Arg(x) ∈

]
− θ0
d+ 1

+ π
k − 1

2

d+ 1
,− θ0

d+ 1
+ π

k + 1
2

d+ 1

[}
(2.5)

i.e., Sk is the sector between Lk−1 and Lk.

Notice that in even sectors we have asymptotically ReV (x) > 0 and in odd sectors

we have ReV (x) < 0.

2.1.2 The Stokes phenomenon. Decreasing solution

From the study of the Schrödinger equation it is known that ψ(x) is an entire function

having a large x expansion in each sector Sk,

ψ(x)∼
Sk

e±
1
2~
V (x) xCk (Ak +

Bk

x
+ . . .) (2.6)

and the sign ±, may jump discontinuously from one sector to another as well as the

numbers Ak, Bk, Ck, . . . (and in general, all the coefficients of the series in 1
xj

at infin-

ity).1

In every sector Sk there exists a unique solution that decreases exponentially along

each direction inside the sector. We now separate solutions in the even and odd sectors

1The corresponding series is asymptotic, so we cannot continue it analytically to other sectors.
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Figure 1: Example of the Stokes sector partition and structure of zeros for the
Schrödinger equation solution ψ(x) that decreases in the light-colored sector and in-
creases in all other sectors (the degree of the potential V (x) is four).

and consider the set {ψα(x)} of solutions each of which decreases in the corresponding

even sector. We therefore introduce a sectorwise system of solutions to the Schrödinger

equation.

An important and useful result is the Stokes theorem, which claims that if the

asymptotics of ψ(x) is exponentially small in some sector, then the same asymptotic

series expansion (2.6) is valid in the two adjacent sectors (and therefore ψ(x) is expo-

nentially large in those two sectors).

In the general case, (i.e., for a generic potential U(x)), the solution ψα(x) de-

creases only in the sector Sα, and is exponentially large in all other sectors. But if the

Schrödinger potential U(x) is non-generic, then there may exist several sectors in which

ψα(x) is exponentially small (which means that ψα1(x) = ψα2(x) for some α1 6= α2).

In what follows, we mainly consider the general case, so in what follows we assume

all the functions ψα to be different if not stating the opposite.

The case studied in [11] was the most degenerate case in which one and the same

solution ψ is exponentially small in d+ 1 sectors.

2.1.3 Zeroes of ψ

Every ψα(x) is an entire function with an essential singularity at ∞, and with isolated

zeroes s
(α)
i , ψα(s

(α)
i ) = 0. The number of these zeros can be finite or infinite. In the

latter case, zeroes may only accumulate near ∞, and only along the Stokes half-lines

Lj bordering the sectors (see fig.2.1.1). This accumulation of zeroes along the half–line

Lj occurs if and only if ψα(x) is exponentially large on both sides of the half-line. So,
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no accumulation of zeros of the function ψα(x) occurs along the lines that border the

α’s sector, and this function can therefore have only a finite number of zeros inside

the “bigger” sector when we join the α’s sector with the adjacent parts of the two

neighboring sectors.

If U(x) is generic, then each of ψα(x) has an infinite number of zeroes, the zeroes

accumulate at ∞ along all half-lines Lj with j 6= α, α− 1.

In paper I, we define the genus of the Schrödinger equation to be related to the

number of half-lines of zeros accumulation of a selected function ψ0. However, this

definition is scheme-dependent, and we can in principle obtain different genera for the

very same function U(x). The clear understanding of this is still lacking; a possible

explanation is that we actually deal with different sections of an ambient infinite-genus

quantum surface.

2.1.4 Sheets

In sector Sα we have the asymptotic behavior

ψα(x) ∼ e−~V (x)/2 xt0/~(Aα +
Bα

x
+ . . .), (2.7)

and the function ψα has the same asymptotic behavior in the two adjacent sectors.

We consider an α’s sheet of the quantum Riemann surface to be the union of these

three sectors with possible analytic continuation into a finite domain of the complex

plane. We consider only the sheets enumerated by even α and, in contrast to paper I,

introduce democracy of sheets: all of them will be equivalent in the approach of this

paper. Sheets obviously overlap; we have to choose boundaries (cuts) between them.

2.2 Resolvent

The first ingredient of our strategy is to define a resolvent similar to the one in matrix

models.

Definition 2.1 We define the resolvent sectorwise:

ω(
α
x) = ~

ψ′
α(x)

ψα(x)
+
V ′(x)

2
, for x ∈ Sα. (2.8)

For a quantity defined sectorwise we indicate it by setting the sector index above

the variable, as shown in (2.8).

It follows from this definition that ω(x) has simple poles at zeros of ψα in the

corresponding sector. The boundaries between sectors overlap, but in what follows we

fix them in a more explicit form (see the partition of the complex plane by A-cycles).
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A straightforward computation then gives

ω(
α
x) ∼

x→∞α,∞α±1

t0
x
+O(1/x2), (2.9)

that is, in each sheet the resolvent possesses asymptotic properties of a standard matrix-

model resolvent.

An important property of any solution ψα is that

Res
s
(α)
i

1

ψ2
α(x)

= 0 (2.10)

The main property of ω(
α
x) is that it satisfies the Ricatti equation. We obtain

V ′(x)ω(
α
x)− ω2(

α
x)− ~ω′(

α
x) =

V ′(x)2

4
− ~2ψ

′′
α(x)

ψα(x)
− ~

V ′′(x)

2

=
V ′(x)2

4
− U(x)− ~

V ′′(x)

2
= P (x), (2.11)

with P (x) being a polynomial of degree d− 1 in x and this polynomial is one and the

same for all sheets of the quantum Riemann surface introduced below.

3 Quantum Riemann Surface

In this section we define the notions of A- and B-cycles and the first kind differentials

dual to them.

3.1 The contour CD and the set of A- and B-cycles
In papers on matrix models (on an early stage, before coming to residues at the branch

points), we have the special contour of integration, CD, that encircles all the singularities
of resolvents leaving apart all other possible singular points. The analogue of such a

contour in our case is the union of d + 1 contours, one per each sheet, that pairwise

coincide in far asymptotic domains of odd Stokes sectors and separate all the zeros of

the function ψα from the infinity ∞α (which is always possible because we have a finite

number of zeros in each sheet). We have (see Fig. 3.1)
∮

CD
f(x)dx ≡

∑

α

∫ ∞α+1

∞α−1

f(
α
x)dx (3.1)

for any function f(
α
x) that has no asymptotic zero concentration along the boundary

lines of the sector Sα. Here and hereafter, we assume that f(
α
x) may depend on a finite

number of derivatives of the function ψα(x), the symbol f(
α
x) then indicates that we

substitute the solution ψα(x) as an argument.

8



ψ0

ψ2

ψ4

ψ6

Figure 2: The original integration contour CD.

3.1.1 A- and B-cycles

We now deform the integration contour CD pushing through the “middle” part of the

complex plane and taking the residues at the zeros s
(α)
i of the corresponding functions

ψα as shown in Fig. 3.1.1. On the way we might break some contours presenting them

as the unions of newly introduced contours all of which are stretched between different

asymptotic directions. As a result, we obtain a system of exactly 2d contours in which

(leaving aside the residues at zeros s
(α)
i ) all the contours are pairwise identified and

represent edges of d “cuts”. As the result, we obtain a complete system of d cuts

Ãi, i = 1, . . . , d, that separate all the odd-numbered infinities2 and determining the

corresponding sheets of the quantum Riemann surface. If the functions ψα(x) coincide

for some sheets, then we can identify these sheets. Note that we definitely have an

arbitrariness in constructing this system of cuts; we can also arbitrarily assign the

residues inside the sheet to belong to one of several contours bounding this sheet.

We call the cut separating two sheets a cycle Ãα, and it is characterized by four

indices: α+ and α− are indices of the sheets separated by this cut (they are even

numbered in our classification); α̃+ and α̃− are indices of infinities that are asymptotic

for this cut (they are odd numbered).

To each complete set {Ãα}dα=1 of Ã-cycles we uniquely set into the correspondence

the set {B̃α}dα=1 of B̃-cycles that go pairwise between the even-numbered infinities (∞α+

2In what follows, we identify an infinity “point” with the corresponding number with the related
asymptotic direction.
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and ∞α−) such that the intersection index Ãα ◦ B̃β = δα,β.

Definition 3.1 We define the integrals over the cycles Ãα and the conjugate cycle B̃α
to be (see Fig. 3.1.1)

∮

Ãα

f(x)dx
def
=

∫ ∞α̃+

∞α̃−

(f(
α+
x )− f(

α−
x )) dx+

∑
res

s
(α±)

i (α)

f(
α±
x ) (3.2)

and ∮

B̃α

f(x)dx
def
=

∫ ∞α+

∞α−

(f(
α+
x )− f(

α−
x )) dx, (3.3)

where the residues in the first expression are taken at those zeros of ψα± that are

assigned to the corresponding contour.

Because the prescription for the sheet assignment follows from the definitions (3.2)

and (3.3) of the cycle integrals, we omit the sheet labels in the corresponding integrands.

• •
•

•

Ã1

Ã2

Ã3

Figure 3: Example of pushing the contour CD from infinities to the set of Ã-cycles.

Remark 3.1 Assignment of residues in the αth sheet to the contours bounding this sheet
is arbitrary; we have therefore a (discrete) ambiguity in the definition (3.2) of the Ã-cycle
integrals. However, the notion of the integral over CD is well defined and does not depend on
the choice of Ã-cycles.

Obviously,
∮
CD f(x)dx =

∑d
i=1

∮
Ãi
f(x)dx.

We now introduce the “genuine” A- and B-cycles, which are straightforward ana-

logues of the set of A- and B-cycles on a standard Riemann surface. For this, we

10



select one among the Ã-cycles, say, the cycle Ãd and the conjugate cycle B̃d. Then, we
identify Ai = Ãi and Bi = B̃i − B̃d for i = 1, . . . , d − 1 in the sense of Definition 3.1,

that is
∮

Ai

f(x)dx
def
=

∮

Ãi

f(x)dx,
∮

Bi

f(x)dx
def
=

∮

B̃i

f(x)dx−
∮

B̃d

f(x)dx for i = 1, . . . , d− 1, (3.4)

and we call the number d − 1 = g of independent A- and B- cycles the genus of the

quantum Riemann surface.

The newly introduced A- and B-cycles again satisfy the standard intersection for-

mula,

Aα ∩ Bβ = δα,β, (3.5)

and most of our construction features depend only on the homology class of the paths

Aα, Bα at the asymptotic infinities, but in the intermediate considerations it is useful

to choose a representant, the intersection point Pα,

Aα ∩ Bα = {Pα}. (3.6)

• •
•

•

Ã1

Ã2

Ã3

B̃1

B̃2

B̃3

∞1̃−

∞1̃+
= ∞2̃−

∞2̃+
= ∞3̃−

∞3̃+

∞1+

∞1− = ∞2−

∞2+ = ∞3+

∞3−

Figure 4: The pattern of Ã- (dashed lines) and B̃- (dotted lines) cycles for the example
in Fig. 3.1.1.
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3.2 Filling fractions

In random matrices, the notion of filling fractions is just the A-cycle integrals of the

resolvent. Then, if the A-cycles are chosen to lie in the physical sheet (which is possible,

say, in the hyperelliptic case), the discontinuity of the resolvent along the corresponding

cuts determines the eigenvalue density and the A-cycle integrals determine the portions

of eigenvalues lying on the corresponding interval of eigenvalue distribution. They are

called therefore the filling fractions.

In the case of quantum surface, we define the “filling fractions” ǫ̃α to be

ǫ̃α =
1

2iπ

∮

Ãα

ω(x)dx
def
=

∫ ∞α̃+

∞α̃−

(ω(
α+
x )− ω(

α−
x ))dx, α = 1, . . . , d. (3.7)

Note that this definition depends on where we place the contours and (in the case

where a sheet is bounded by more than one Ã-cycle) we also have a freedom to assign

residues inside the sheet to different Ã-cycles, so the filling fractions are defined up to

integers times ~.

For the difference, we have

ω(
α+
x )− ω(

α−
x ) =

wα+,α+

ψα+(x)ψα−(x)
,

where wα+,α+ = ψ′
α+
ψα− − ψ′

α−ψα+ is the Wronskian of the two solutions. Therefore,

this difference decreases exponentially in sectors where the both solutions ψα+ and ψα−

increase, and this is why we identify the asymptotic domains of the A-cycle integrals

with “branch points.”

We have
d∑

α=1

ǫ̃α = t0, (3.8)

which just follows from that the sum of integrals over Ã-cycles is equivalent to evaluat-

ing the integral over CD. This also means that we should take as independent variables

only d− 1 = g of the variables ǫ̃α if we consider t0 to be an independent variable, and

we naturally choose these g variables ǫα to be filling fractions corresponding to the

cycles Aα of the quantum Riemann surface.

Remark 3.2 In the case g = −1 in [5], the only filling fraction is ǫ̃d = t0, and it is given
by the (finite) sum of residues of the function ω at the zeros si:

ǫ̃d = t0 =
∑

i

Res
si
ω = ~#{si},

so t0 is discrete in this case. For g ≥ 0, the variables ǫ̃α, α = 1, . . . , g, and t0 may take
arbitrary, not necessarily integer, values.
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3.3 First kind functions

After defining the cycles, another important step is to define the equivalent of the

first, second and third kind differentials. We begin with the definition of the first-kind

differentials.

Let hk, k = 1, . . . , d − 1, be a basis in the complex vector space of polynomials of

degree ≤ d− 2.

We introduce the functions

vk(
α
x) =

1

~ψ2
α(x)

∫ x

∞α

hk(x
′)ψ2

α(x
′) dx′. (3.9)

We use the same polynomial hk(x
′) for all the sheets of the Riemann surface.

Note that because every ψα(x) is a solution to the Schrödinger equation, vk(
α
x) has

double poles with no residue at the s
(α)
j (at the zeroes of ψα), and behaves like O(1/x2)

in the sector Sα and inside all the sectors in which ψα is exponentially large (if the

polynomial hk(x
′) has power less than d − 2). Therefore, the following integrals are

well defined in the general case:

Ik,α =

∮

Aα

vk(x) dx α = 1, . . . , g, k = 1, . . . , d− 1. (3.10)

If the matrix Ik,α with k, α = 1, . . . , d− 1 has the full rank (which we assume in what

follows), then it is possible to choose the canonically normalized basis of hk such that

Ik,α = δk,α. (3.11)

The functions vk(x) k = 1, . . . , g are therefore the natural analogues of canonically

normalized holomorphic forms (1st kind differentials).

We now extend this notion to the meromorphic (Whitham–Krichever) [15] differ-

entials. For this, let us consider the following basis hk, k = 1, . . ., in the space of

polynomials of arbitrary order: the first d − 1 elements of this basis are the original

polynomials hk each of which has degree not higher than d − 2, each polynomial hk

with k > d− 1 has degree exactly k− 1 and must be chosen on the following grounds.

Define the functions vk(
α
x) with k > d − 1 exactly as in (3.9) with hk being now a

polynomial of arbitrary (but fixed) degree k − 1. The coefficients of hk with k ≥ d− 1

are unambiguously fixed by the normalization conditions:

• (the residue condition)

∮

CD
x−l vk(x)dx = δl,k−d, l = 0, 1, . . . , k ≥ d− 1. (3.12)
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• (the normalizing condition)

∮

Aα

vk(x)dx = 0, α = 1, . . . , d− 1, k = d, . . . . (3.13)

Remark 3.3 Although the functions vk(
α
x) generally increase as xk−d as x → ∞, the in-

tegral (3.12) as well as the normalizing condition (3.13) are well defined for any finite l and

k. This is because the difference vk(
α+
x )− vk(

α−
x ) is exponentially small as x→ ∞α̃± for any

k, and we can integrate it along CD weighted by any polynomially growing function. The
integral (3.12) is therefore a natural analogue of the residue at infinity of order l + 1.

3.4 Riemann matrix of periods

An interesting quantity in standard algebraic geometry is the Riemann matrix of pe-

riods provided by integrals of the holomorphic differentials over B-cycles. So, an anal-

ogous “quantum” Riemann period matrix τi,j, i, j = 1, . . . , g is

τα,i
def
=

∮

Bα

vi(x)dx. (3.14)

Note that this definition makes sense since vi(x) (i = 1, . . . , g) behaves as O(1/x2)

in the sectors asymptotic for the B-cycles. And because the residues of vi(
α
x) vanish at

all zeros s
(α)
j , these integrals depend only on the homology class of B-cycles.

Like for the classical Riemann matrix of periods we have the following property:

Theorem 3.1 The period matrix τ is symmetric: τi,j = τj,i.

proof:

This result follows from Theorem 4.8 below, since:

∮

Bβ

dx

∮

Bα

B(x, z)dz = 2iπ

∮

Bβ

dxvα(x) = 2iπτβ,α

and from the symmetry theorem 4.9 for the Bergman kernel, B(
α
x,

β
z) = B(

β
z,

α
x). �

4 Recursion kernels

One of the key geometric objects in [11] and in [12], is the “recursion kernel” K(x, z).

It was used in the context of matrix models [6] for constructing a solution of loop equa-

tions. We use its analogue below for constructing the 3rd and 2nd kind differentials.
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4.1 The recursion kernel K

First we define the kernel

K̂(
α
x, z) =

1

~ψ2
α(x)

∫ x

∞α

ψ2
α(x

′)
dx′

x′ − z
(4.1)

and for each α = 1, . . . , g, we define

~Cα(z) =

∮

Aα

K̂(x, z) ≡
∫ ∞α̃+

∞α̃−

(K(
α+
x , z)−K(

α−
x , z)). (4.2)

In these expressions, we must also specify the contours of integration w.r.t. the variable

x′ from the infinities ∞α± to the point x lying on the cycle Aα. We assume that these

contours go first from the corresponding infinity along the part of the adjoint cycle Bα
that lies in the sheet α± until it reaches the intersection point Pα; after this point, we

integrate along the cycle Aα towards the final point x (see Fig. 4.1)

Pα
x ∈ Ãα

∞α̃+

Ãα

Figure 5: The path of integration w.r.t. the variable x′ in the expression for the

recursion kernel K(
α
x, y).

To obtain the domain of the function K̂(
α
x, z), we slightly deform the contours of

integration over edges of the Ã-cycles as shown in Fig. 4.1; then, for the variable z lying

in the domain that is “inner” w.r.t. integrations from infinities for all the functions ψγ± ,

that is, for the domain that is separated from all the infinities ∞γ± by the drawn apart

edges of the Ã-cycles, the kernel K̂(
α
x, z) is well defined (and it develops logarithmic

cuts if we push the variable z through the boundary of the sheet Sα).

We now need to describe analytic properties of these functions.

For a fixed x, the kernel K̂(
α
x, z) is defined for z in the cross-hatched domain in

Fig. 3.1.1.

Taking an integration path between ∞α and x we obtain that K̂(
α
x, z) is defined

for z outside this path. Across the path ]∞α, x], K̂(
α
x, z) has a discontinuity w.r.t. the
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• •
•

•

Ã1

Ã2

Ã3

Figure 6: The domain of variable z (crosshatched) in (4.1) (we slightly deform the

Ã-cycle integrals).

argument z:

δzK̂(
α
x, z) =

2iπ

~

ψ2
α(z)

ψ2
α(x)

. (4.3)

The similar statement is true for Cα(z): when z cross the line of the cycle Aβ, we have

δzCβ(z) =
2iπ ψ2

β±(z)

~

∫ ∞
β̃±

z

dx′′

ψ2
β±
(x′′)

. (4.4)

We now define the recursion kernel K(
α
x, z), which is the main ingredient of our

construction.

Definition 4.1 The recursion kernel K(
α
x, z) reads

K(
α
x, z) = K̂(

α
x, z)−

d−1∑

j=1

vj(
α
x)Cj(z). (4.5)

It is defined for z in the cross-hatched domain in Fig. 4.1.

Theorem 4.1 The kernel K has the following properties:

• For a given z,

K(
α
x, z)∼ O(x−2) (4.6)

when x → ∞ in all sectors (if the function ψα(x) increases in all the sectors

except Sα).
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• The normalization condition reads∮

Aj

K(x, z)dx = 0, j = 1, . . . , d− 1. (4.7)

• K(
α
x, z) has double poles with zero residues at the zeros s

(α)
j of ψα.

Theorem 4.2 We have in all sectors at infinity :

K(
α
x, z) ∼

z→∞
O(z−d). (4.8)

More precisely we have:

K(
α
x, z) ∼ −

∞∑

k=d−1

Kk(
α
x)

zk+1
(4.9)

with

K̂k(
α
x) =

1

~ψ2
α(x)

∫ x

∞α

x′k ψ2
α(x

′) dx′, (4.10)

and

Kk(
α
x) = K̂k(

α
x)−

g∑

j=1

vj(
α
x)

∮

Aj

K̂k(x
′) dx′. (4.11)

proof:

We can expand K̂(
α
x, z) as

K̂(
α
x, z) ∼ −

∞∑

k=0

K̂k(
α
x)

zk+1
(4.12)

where

K̂k(
α
x) =

1

~ψ2
α(x)

∫ x

∞α

x′k ψ2
α(x

′) dx′, (4.13)

and therefore

Kk(
α
x) = K̂k(

α
x)−

g∑

α=1

vα(
α
x)

∮

Aα

K̂k(x
′) dx′. (4.14)

For k ≤ d− 2, (x′)k can be presented as a linear combinations of hj(x
′),

x′k =

d−1∑

β=1

bk,β hβ(x
′), (4.15)

and from the normalization condition, we immediately obtain that
∮

Aα

K̂k(x
′) dx′ = bk,α, (4.16)

and therefore Kk(x) = 0 for k ≤ d− 2, which implies that

K(x, z) = O(z−d). (4.17)

�
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4.2 Third kind differential: the kernel G(
α
x,

β
z)

The second important kernel to define is the equivalent of the third kind differential.

Definition 4.2 The kernel G(
α
x,

β
z) is

G(
α
x,

β
z) = −~ψ2

β(z) ∂z
K(

α
x, z)

ψ2
β(z)

= 2~
ψ′
β(z)

ψβ(z)
K(

α
x, z)− ~∂zK(

α
x, z) (4.18)

Integration by parts gives

G(
α
x,

β
z) = − 1

x− z
+

2

ψ2
α(x)

∫ x

∞α

dx′

x′ − z
ψ2
α(x

′)

(
ψ′
α(x

′)

ψα(x′)
−
ψ′
β(z)

ψβ(z)

)

−~

d−1∑

j=1

vj(
α
x)ψ2

β(z)∂z
Cj(z)

ψ2
β(z)

. (4.19)

In what follows we often are in the situation when we take two integration contours,

CDx
and CDz

, and must interchange the order of integration (or the order in which

these two contours intersect the B-cycles). From the definition of the A-cycles, it is

then obvious that we must interchange the variables x and z within the same sector,

so we need permutation relations for G(
α
x,

β
z) with α = β. Then, as x → z, we find

that G(
α
x,

α
z) ∼ 1

z−x , i.e., there is a simple pole with the unit residue at z = x. Because

the combination 1
x′−z

(
ψ′
α(x

′)
ψα(x′)

− ψ′
α(z)
ψα(z)

)
is regular at x′ = z, interchanging the order of

integration over CDx
and CDz

then just gives the residue at z = x; no logarithmic cut

takes place.

Theorem 4.3 G(
α
x,

β
z) is an analytical function of x with a simple pole at x = z with

residue −1 for α = β and with double poles at the s
(α)
j ’s (zeros of ψα(x)) with vanishing

residues, and possibly an essential singularity at ∞.

G(
α
x,

β
z) is an analytical function of z, with a simple pole at z = x with residue +1

for α = β, with simple poles at z = s
(β)
j , and with a discontinuity across Aγ-cycles with

γ = 1, . . . , g (this discontinuity has opposite signs depending on which line of the cycle

Aγ, γ+ or γ−, we cross; no discontinuity takes place when crossing the last cycle Ãn):

δzG(
α
x,

β±
z ) = ∓2iπ vβ(

α
x). (4.20)

We also have ∮

Aα

G(x,
β
z) dx = 0. (4.21)

proof:
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All the discontinuities of K(
α
x, z) except the one for Cj(z) (4.4) are proportional

to ψ2
α(z) and vanish in (4.18). The discontinuity of Cj(z) gives ∓2πi, and thus, the

discontinuity of G(
α
x,

β
z) is δzG(

α
x,

β±
z ) = ∓2iπ vβ(

α
x).

Since K(
α
x, z) is regular when z = s

(β)
j , then it is clear that G(

α
x,

β
z) has simple poles

at z = s
(β)
j , with residue −2~K(x, s

(β)
j ).

In the variable x, K(
α
x, z) has double poles at x = s

(α)
j without residue, and this

property holds for G(
α
x,

β
z) as well.

The vanishing A-integral property follows immediately from (4.7). �

Theorem 4.4

G(
α
x,

β
z) = O(1/x2) (4.22)

when x→ ∞α for any α.

At large z in the sector Sγ we have

lim
z→∞γ

G(
α
x,

β
z) = G(

α
x,∞β) = ηγ,β td+1Kd−1(

α
x) (4.23)

where ηγ,β = ±1 depending on the asymptotic behavior of ψβ ∼ e±V/2~ in the sheet Sγ.

proof:

The large x behavior follows from theorem 4.1. The large z behavior is given by

theorem 4.2, i.e. G(
α
x,

β
z) ∼ ±V ′(z)K(

α
x, z) ∼ ± td+1Kd−1(

α
x). The sign depends on the

behavior of the solution in this sector. �

4.3 The Bergman kernel B(
α
x,

β
z)

In classical algebraic geometry, the Bergman kernel is the fundamental second kind

bi-differential, it is the derivative of the 3rd kind differential. Using the same definition

as in [11], we define:

B(
α
x,

β
z) = −1

2
∂z G(

α
x,

β
z). (4.24)

We call the kernel B the “quantum” Bergman kernel.

Theorem 4.5 B(
α
x,

β
z) is an analytical function of x. When α = β, it has a double

pole at x = z in the both variables x and z with no residue, and it has double poles in

x and in z at the respective zeros s
(α)
j and s

(β)
j with vanishing residues, and possibly an

essential singularity at ∞. The discontinuity across A-cycles that was present in the

kernel G disappears upon differentiation, so B(
α
x,

β
z) is defined analytically in the whole

complex plane.
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proof:

These properties follow from those of G(
α
x,

β
z) of theorem 4.3. In particular, the

only discontinuity of G(
α
x,

β
z) is along the A-cycles, and it is independent of z, therefore

B(
α
x,

β
z) has no discontinuity there. �

4.3.1 Properties of the Bergman kernel

Theorem 4.6

B(
α
x,

β
z) = O(1/x2) (4.25)

when x→ ∞ in all sectors, and

B(
α
x,

β
z) = O(1/z2) (4.26)

when z → ∞ in all sectors.

proof:

Follows from the large x and z behaviors of G(
α
x,

β
z). �

Theorem 4.7 The kernel B satisfies the loop equations:

(
2
ψ′
α(x)

ψα(x)
+ ∂x

) (
B(

α
x,

β
z)− 1

2(x− z)2

)
+ ∂z

ψ′
α(x)
ψα(x)

− ψ′
β
(z)

ψβ(z)

x− z
= P

(0)
2 (x,

β
z), (4.27)

where P
(0)
2 (x,

β
z) is a polynomial in x of degree at most d− 2, and

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

) (
B(

α
x,

β
z)− 1

2(x− z)2

)
+ ∂x

ψ′
α(x)
ψα(x)

− ψ′
β
(z)

ψβ(z)

x− z
= P̃

(0)
2 (

α
x, z) (4.28)

where P̃
(0)
2 (

α
x, z) is a polynomial in z of degree at most d− 2.

proof:

We begin with proving the first loop equation for B(
α
x,

β
z). We define:

B̂(
α
x,

β
z) =

1

2
∂z

(
2
ψ′
β(z)

ψβ(z)
− ∂z

)
K̂(

α
x, z) (4.29)

that is, we have

B(
α
x,

β
z) = B̂(

α
x,

β
z)−

d−1∑

j=1

vj(
α
x)

∮

Aj

B̂(x′′,
β
z)dx′′. (4.30)

Since (2ψ
′
α(x)
ψα(x)

+ ∂x) vj(
α
x) = hj(x) is itself a polynomial of degree ≤ d− 2, it suffices

to prove Eq. (4.27) for B̂(
α
x,

β
z).
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We have
(
2
ψ′
α(x)

ψα(x)
+ ∂x

)
B̂(

α
x,

β
z) =

1

2
∂z

(
2
ψ′
β(z)

ψβ(z)
− ∂z

)
1

x− z

= − 1

(x− z)3
+ ∂z

ψ′
β(z)

ψβ(z)(x− z)
(4.31)

and therefore:

(
2
ψ′
α(x)

ψα(x)
+ ∂x

) (
B̂(

α
x,

β
z)− 1

2(x− z)2

)
+ ∂z




ψ′
α(x)
ψα(x)

− ψ′
β
(z)

ψβ(z)

x− z


 = 0 (4.32)

This proves Eq. (4.27) with

P
(0)
2 (x,

β
z) = −

g∑

j=1

hj(x)

∮

Aj

B̂(x′′,
β
z)dx′′. (4.33)

We now prove the second loop equation for B(
α
x,

β
z). We have

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
B̂(

α
x,

β
z) =

1

2

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
∂z

(
2
ψ′
β(z)

ψβ(z)
− ∂z

)
K̂(

α
x, z), (4.34)

where the operator Û(z) ≡ 1
2

(
2
ψ′
β
(z)

ψβ(z)
+ ∂z

)
∂z

(
2
ψ′
β
(z)

ψβ(z)
− ∂z

)
reads

Û(z) = −1

2
∂3z +

2

~2
U(z)∂z +

1

~2
U ′(z) (4.35)

and is therefore independent on the solution ψβ(z) we started with. This is the Gelfand–

Dikii operator [14]. We then have

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
B̂(

α
x,

β
z) =

1

ψ2
α(x)

∫ x

∞α

ψ2
α(x

′) dx′
(
− 3

(x′ − z)4
+

2U(z)

(x′ − z)2
+
U ′(z)

x′ − z

)

(4.36)

We integrate the first term by parts three times introducing Yα(x) = ψ′
α(x)/ψα(x) (and

exploiting that Y ′
α + Y 2

α = U). The result reads

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
B̂(

α
x,

β
z) =

1

(x− z)3
− ∂

∂x

Yα(x)

x− z
+

+
1

ψ2
α(x)

∫ x

∞α

ψ2
α(x

′) dx′
(
2
U(z)− U(x′)

(x′ − z)2
+
U ′(z) + U ′(x′)

x′ − z

)
(4.37)

This implies that

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

) (
B̂(

α
x,

β
z)− 1

2(x− z)2

)
+

∂

∂x

Yα(x)− Yβ(z)

x− z
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=
1

ψ2
α(x)

∫ x

∞α

ψ2
α(x

′) dx′
(
2
U(z)− U(x′)

(x′ − z)2
+
U ′(z) + U ′(x′)

x′ − z

)
, (4.38)

and the obtained expression is obviously a polynomial in z. The expression in the

brackets in (4.38) is a skew-symmetric polynomial in x′ and z of degree not higher than

2d − 2. Moreover, all the terms with (x′)k with k ≤ d − 2 become upon integration

linear combinations of vj(
α
x) and vanish identically when we apply the projection to the

subspace of zero A-cycle integrals. So, the minimal power of x′ that contributes to the

answer is (x′)d−1. But there is no term (x′)d−1zd−1 in the brackets because it contradicts

the skew-symmetricity. The first nonzero term that might contribute is proportional

to (x′)d−1zd−2, which obviously means that the obtained polynomial P̃
(0)
2 (

α
x, z) has the

maximum degree at most d− 2 in z. �

Theorem 4.8 We have for every α = 1, . . . , g:
∮

Ai

B(x,
β
z) dx = 0,

∮

Aj

B(
α
x, z) dz = 0 (4.39)

and ∮

Bj

B(
α
x, z) dz = 2iπvj(

α
x). (4.40)

proof:

The vanishing of A-cycle integrals in the x variable is by construction. For the z

variable, we have
∮

Aβ

B(
α
x, z)dz =

∫ ∞
β̃+

∞
β̃−

(B(
α
x,

β+
z −B(

α
x,

β−
z )dz

= −1

2

(
G(

α
x,

β+∞β̃+
)−G(

α
x,

β−∞β̃+
)−G(

α
x,

β+∞β̃−
) +G(

α
x,

β−∞β̃−
)

)
,(4.41)

and the asymptotic conditions in all four cases for the function G in the second line

are the same, so from theorem 4.4 we conclude that the result is zero.

We begin with the integral over a cycle B̃β:
∮

B̃β

B(
α
x, y)dy = jump of G(

α
x, y) on Ãβ

−1

2

(
G(

α
x,

β+∞β+)−G(
α
x,

β−∞β+)−G(
α
x,

β+∞β−) +G(
α
x,

β−∞β−)

)

= 2πi(1− δβ,d)vβ(
α
x) + 2Kd−1(

α
x), (4.42)

where we have used again the asymptotic conditions from Theorem 4.4. This formula

implies that if we perform the integration
∮
Bj

for j = 1, . . . , d−1, which is the difference

of integrals over the cycles B̃j and B̃d, we obtain the formula (4.40). �

The key property of the Bergman kernel is provided by the following theorem.
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Theorem 4.9 B(
α
x,

β
z) is symmetric,

B(
α
x,

β
z) = B(

β
z,

α
x) (4.43)

proof:

The proof uses that B(
α
x,

β
z) satisfies the loop equation in the two variables. We

have:
(
2
ψ′
β(z)

ψβ(z)
+ ∂z

) (
2
ψ′
α(x)

ψα(x)
+ ∂x

) (
B(

α
x,

β
z)− 1

2(x− z)2

)

=

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

) (
P

(0)
2 (x,

β
z)− ∂z

ψ′
α(x)
ψα(x)

− ψ′
β
(z)

ψβ(z)

x− z

)

=

(
2
ψ′
α(x)

ψα(x)
+ ∂x

) (
P̃

(0)
2 (

α
x, z)− ∂x

ψ′
α(x)
ψα(x)

− ψ′
β
(z)

ψβ(z)

x− z

)
(4.44)

We then have
(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
P

(0)
2 (x,

β
z)−

(
2
ψ′
α(x)

ψα(x)
+ ∂x

)
P̃

(0)
2 (

α
x, z)

=

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
∂z

ψ′
α(x)
ψα(x)

− ψ′
β
(z)

ψβ(z)

x− z
−
(
2
ψ′
α(x)

ψα(x)
+ ∂x

)
∂x

ψ′
α(x)
ψα(x)

− ψ′
β
(z)

ψβ(z)

x− z

= 2
U(x)− U(z)

(x− z)2
− U ′(x) + U ′(z)

x− z
, (4.45)

so that

(x− z)2
(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
P

(0)
2 (x,

β
z) + 2U(z) + (x− z)U ′(z)

= (x− z)2
(
2
ψ′
α(x)

ψα(x)
+ ∂x

)
P̃

(0)
2 (

α
x, z) + 2U(x) + (z − x)U ′(x)

def
= R(x, z). (4.46)

Here, the first line is a polynomial in x, whereas the second line is in turn a polynomial

in z. Therefore, R(x, z) is a polynomial in the both variables, of degree at most d in

each variable. Moreover, we must have:

R(x, x) = 2U(x) (4.47)

Therefore we must have:

R(x, z) =
1

~2

(
1

2
V ′(x)V ′(z)− ~

V ′(x)− V ′(z)

x− z
− P (x)− P (z)

)
+ (x− z)2R̃(x, z)

(4.48)

where R̃(x, z) is a polynomial in the both variables of degree at most d − 2 in each

variable.
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Putting this back into (4.46) and using the symmetry x↔ z, we obtain

(
2
ψ′
β(z)

ψβ(z)
+ ∂z

)
(P

(0)
2 (x,

β
z)− P̃

(0)
2 (

β
z, x)) = R̃(x, z)− R̃(z, x) (4.49)

Then, we can decompose the r.h.s into the basis hi(x)hj(z),

R̃(x, z)− R̃(z, x) =
d−1∑

i,j=1

(R̃i,j − R̃j,i)hi(x)hj(z) (4.50)

Applying the integral operator

f(z) 7→ 1

ψ2
β(z)

∫ z

∞β

ψ2
β(z

′)f(z′)dz′ (4.51)

to the differential equation (4.49), we obtain

P
(0)
2 (x,

β
z)− P̃

(0)
2 (

α
z, x) =

d−1∑

i,j=1

(R̃i,j − R̃j,i)hi(x) vj(
β
z) + A1(x) (4.52)

where A1(x) is some integration constant.

Then using the loop equations (4.7) we find by substraction that:

(
2
ψ′
α(x)

ψ(x)
+ ∂x

)(
B(

α
x,

β
z)− B(

β
z,

α
x)

)
= P

(0)
2 (x,

β
z)− P̃

(0)
2 (

β
z, x) (4.53)

and applying the integral operator (4.51) w.r.t. the variable x in the sheet Sα, we

obtain

B(
α
x,

β
z)− B(

β
z,

α
x) =

d−1∑

i,j=1

(R̃i,j − R̃j,i)vi(
α
x) vj(

β
z) + A(x) + Ã(z), (4.54)

with A(x) and Ã(z) the integration constants.

Next, the large x and large z behavior of B imply that A(x) = Ã(z) = 0, and

therefore

B(
α
x,

β
z)− B(

β
z,

α
x) =

∑

i,j

(R̃i,j − R̃j,i) vi(
α
x)vj(

β
z). (4.55)

Then, using theorem 4.8

∮

Ai

B(x,
β
z)dx =

∮

Aj

B(
α
x, z)dz = 0 ∀ i, j, (4.56)

we obtain that

R̃i,j = R̃j,i ∀i, j, (4.57)

which completes the proof of the symmetricity of the Bergman kernel. �
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We see therefore that our “quantum Bergman kernel” enjoys all the features of

the standard Bergman kernel associated with a Riemann surface: it is symmetric, has

no discontinuities, and possesses the double pole with no residue at the coinciding

arguments (which corresponds in our case to the coinciding arguments on the same

sheet Sk). Using all these kernels we can then generalize the recursion of [9, 6, 11]

defining the correlation functions (see the next section).

4.4 Meromorphic forms and the Riemann bilinear identity

Definition 4.3 A meromorphic form R(
α
x) reads

R(
α
x) =

1

~ψ2
α(x)

∫ x

∞α

r(x′)ψ2
α(x

′) dx′ (4.58)

where r(x) is a rational function of x, which behaves at most like O(xd−2) at large x

and whose poles ri are such that

Res
x→ri

ψ2
α(x) r(x) = 0. (4.59)

The holomorphic forms vj(
α
x), the kernels G(

α
x,

β
z) and B(

α
x,

β
z) are meromorphic

forms of x.

A meromorphic form R(
α
x) defined by (4.58) has poles at x = ri, the poles of r(x),

with degree one less than that of r(x), it has double poles at the s
(α)
i with vanishing

residues, and it behaves like O(x−2) in all sectors (having also an accumulation of

poles along the half-lines Li of accumulations of zeroes of ψα). Note that the integrals∮
Aα

R(x)dx are well defined.

We then have the following theorem.

Theorem 4.10 Riemann bilinear identity

Consider a meromorphic form R(
α
z). For z in the sector Sα (outside the

crosshatched domain in Fig. 4.1), we obtain the representation formula

R(
α
z) = −

∑

β

∑

ri∈Sβ

Res
ri
G(

α
z,

β
y)R(

β
y)dy −

∑

β

∑

s
(β)
k

∈Sβ

Res
s
(β)
k

G(
α
z,

β
y)R(

β
y)dy

+

g∑

j=1

vj(
α
z)

∮

Aj

R(y) dy. (4.60)

proof:

We begin with the integral over CD (Fig. 3.1) of G(
α
z, y)R(y)dy:

∫

CD
G(

α
z, y)R(y)dy =

∑

β

∫ ∞β+1

∞β−1

G(
α
z,

β
y)R(

β
y)dy. (4.61)
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This integral is identically zero because of asymptotic conditions G(
α
z,

β
y) → 1/y as

y → ∞β and R(
β
y) ∼ 1/y2 as y → ∞β and by the fact that no accumulation of zeros

occurs for the function R(
β
y) on the boundaries between the sectors Sβ and Sβ±1. We

then push the integration contours through the complex plane towards the Ã-cycles

as in Fig. 3.1.1; the residues at the points ri and s
(β)
k give the first line of (4.60), the

residue at the point x = y in the sector Sα gives the left-hand side because we have

from Theorem 4.3 that G(
α
z,

α
y) = 1/(z − y) + reg.; it remains to consider the integrals

along the Ã-cycles. For this, note that our integrations over y are outer w.r.t. the

integrations over the variable x along A-cycles in the formula (4.2) for the factors Cj,

and when we push the integration over y through that for x, we have the discontinuity

of G(
α
z,

β±
y ), which is equal to 2πivj(

α
z); no such discontinuity occurs for the cycle Ãd.

All these discontinuities are independent of y, so the contour integral of the product

factorizes for each cycle Aj and gives the second line of (4.60).

To evaluate the remaining integrals inside the crosshatched domain in Fig. 4.1 recall

that G(
α
x,

β
y) = ψ2

β(y) ∂y

(
K(

α
x, y)/ψ2

β(y)
)
, so integrating by parts we obtain

∫ ∞
β̃+

∞
β̃−

(
G(

α
x,

β+
z )R(

β+
z )−G(αx, β−z )R(

β−
z )
)
dz = −

∫ ∞
β̃+

∞
β̃−

(K(
α
x, z)r(z)−K(

α
x, z)r(z))dz = 0,

(4.62)

and these contributions vanish for all the cycles Aβ. �

5 Correlation functions. Diagrammatic represen-

tation

In this section, we define the sectorwise defined versions of the quantum correlation

functions from paper I (deformations of “classical” correlation functions introduced in

[9, 6, 12]). Our definitions are inspired from (non-Hermitian) eigenvalue models (see

section 8), but they are valid as well in a general setting of an arbitrary Schrödinger

equation.

5.1 Definition and properties of correlation functions

Definition 5.1 We define the functions W
(h)
n (

α1
x 1, . . . ,

αn
x n) called the n-point correla-

tion function of “genus” h by the recursion

W
(0)
1 (

α
x) = ω(

α
x), W

(0)
2 (

α1
x 1,

α2
x 2) = B(

α1
x 1,

α2
x 2) (5.1)
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W
(h)
n+1(

α0
x 0, J) =

∮

CDx

dxK(
α0
x 0, x)

(
W

(h−1)

n+2 (x, x, J)+

h∑

r=0

′∑

I⊂J
W

(r)
|I|+1(x, I)W

(h−r)
n−|I|+1(x, J/I)

)

(5.2)

where J and I are the collective notation for the variables (J = {x1, . . . , xn}), the

symbol
∑∑′ means that we exclude the terms (r = 0, I = ∅), (r = 0, I = {xi}),

(r = h, I = J/{xi}), and (r = h, I = J), the integration over the contour CDx
is

defined in (3.1), and where

W
(h)

n (
α1
x 1, . . . ,

αn
x n) = W (h)

n (
α1
x 1, . . . ,

αn
x n)−

δn,2δh,0δα1,α2

2(x1 − x2)2
. (5.3)

Here the point x0 is outside the integration contour CDx
for the variable x and all the

xi are outside the A-cycles of the projection integrals.

To shorten equations we introduce the notation

U (h)
n (

α
x, J) =W

(h−1)

n+2 (
α
x,

α
x, J) +

h∑

r=0

′∑

I⊂J
W

(r)

|I|+1(
α
x, I)W

(h−r)
n−|I|+1(

α
x, J/I). (5.4)

The main property of 5.1 is that these quantities solve the loop equations in the

1/N2-expansion. We also prove the following properties:

Theorem 5.1 Each W
(h)
n (

α1
x 1, . . . ,

αn
x n) with 2− 2h− n < 0 is an analytical functions

of all its arguments with poles only when xi → s
(αi)
j . It vanishes at least as O (1/x2i )

when xi → ∞αi
and has no discontinuities across A-cycles.

Corollary 5.1 We have that
∫

CDx

W
(h)
n+1(x, J)dx = t0δn,0δh,0.

proof:

We proceed by recursion on 2h+n. The analyticity is obvious; the theorem is true

for W
(0)
2 . Assume it is true up to 2g + n, we shall prove it for W

(g)
n+1(x0, x1, . . . , xn).

To prove the asymptotic behavior, note that the definition 4.1 implies, first, that the

term
∫
CDy

K̂(
α
x, y)U

(h)
n (y, J)dy is of order of 1/(ψ2

α(x))
∫ x
∞α

ψ2
α(x

′)dx′/(x′)2 ∼ x−d−2, so

the leading contribution comes from the terms proportional to vj(
α
x) ∼ x−2, which

completes the proof. �

We also have the following simple lemma that follows from the corollary 5.1 and

from the normalization conditions for the kernel K(
α
x, y).

Lemma 5.1 For all (n, h) 6= (0, 0) we have
∮

Ãα

W
(h)
n+1(x, J)dx = 0. (5.5)
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Now comes first of the main theorems.

Theorem 5.2 For 2−2h−n < 0, the W
(h)
n satisfy the loop equation. This means that

the quantity

P
(h)
n+1(x;

α1
x 1, . . . ,

αn
x n) = ~

(
2
ψ′
α(x)

ψα(x)
+ ∂x

)
W

(h)

n+1(
α
x,

α1
x 1, . . . ,

αn
x n)

+

h∑

r=0

′∑

I⊂J
W

(r)

|I|+1(
α
x, I)W

(h−r)
n−|I|+1(

α
x, J/I) +W

(h−1)

n+2 (
α
x,

α
x, J)

+
∑

j

∂xj

(
W

(h)

n (
α
x, J/{xj})δα,αj

−W
(h)

n (
αj

x j , J/{xj})
(x− xj)

)
(5.6)

is a polynomial in the variable x, which is of degree at most d − 2 and is independent

on the choice of the sector Sα.

proof:

in appendix A �

Theorem 5.3 Each W
(h)
n is a symmetric function of all its arguments.

proof:

in appendix C, with the special case of W
(0)
3 in appendix B. �

Theorem 5.4 For 2 − 2h − n < 0, W
(h)
n (

α1
x 1, . . . ,

αn
x n) is homogeneous of degree 2 −

2h− n:
(
~
∂

∂~
+

d+1∑

j=1

tj
∂

∂tj
+

g∑

i=1

ǫi
∂

∂ǫi
+ t0

∂

∂t0

)
W (h)
n (

α1
x 1, . . . ,

αn
x n)

= (2− 2h− n)W (h)
n (

α1
x 1, . . . ,

αn
x n). (5.7)

proof:

Under a change tk → λtk, ~ → λ~, ǫi → λǫi, and t0 → λt0 the Schrödinger equation

remains unchanged, and thus ψ is unchanged. The kernel K is changed to K/λ and

nothing else is changed. By recursion, W
(h)
n is then changed by λ2−2h−n. �

5.2 Diagrammatic representation

The diagrammatic representation for the correlation functions structurally coincides

with the one for the correlation functions in one- and two-matrix models [9, 4, 6]. We

introduce the three kinds of propagators

x y

K(
α
x, y)

x y

G(
α
x,

β
y)

x y

B(
α
x,

β
y)
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and assume the partial ordering from “infinity” to “A-cycles” to be from left to the

right in graphical expressions. We represent the terms W
(g)
n (J) via the graphs with

three-valent vertices; we assign its own variable ξ to every inner vertex and assume the

integration w.r.t. this variable along the contour CD, the order of integration depends

on which vertex is closer to the “A-cycles”: we begin with integrating at the innermost

vertex. We also have n outer legs (one-valent vertices) corresponding to the points
αi
x i,

i = 1, . . . , n. They are assumed to lie outside all the inner integrations. For example,

the term W
(0)
3 (x1, x2, x3) then has the form

x1

x2

x3

whereas the recurrent relation (5.2) takes the form

W
(h)
n+1(x0, J)

x1
...

x0

...
xn

=

W
(h−

1
)

n
+
2

(ξ,ξ,J
)

ξ

x1
...

x0

...
xn

+
∑′

r,I

W
(r)
|I|+1(ξ, I)

W
(h−r)
n−|I|+1(ξ, J/I)

ξ

I

x0

J/I

We now formulate the diagrammatic technique for constructing the functions

W
(h)
n (J) for n > 0 and 2g − 2 + n > 0. Formally it is the same as the one in [9, 6].

We comprise all the diagrams with the corresponding automorphism multipliers

such that

• for W
(h)
n (J) a diagram contains exactly n external legs and h loops;

• we segregate one variable, say, x1, and take all the maximum connected rooted

subtrees starting at the vertex x1 and not going to any other external leg;

• we associate the directed propagators K(x, y) with all the edges of the rooted

subtree; the direction is always from the root to branches;

• all other propagators that comprise exactly h inner propagators and n − 1 re-

maining external legs are B(x, y) if the vertices x and y are distinct and B(x, x)

for the loop composed from the single propagator;
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• each rooted subtree establishes the partial ordering on the set of three-valent

vertices of the diagram; we allow the inner propagators B(x, y) to connect only

the comparable vertices (a vertex is comparable to itself).

6 Deformations

In this section, we consider the variations of correlation functions W
(g)
n under infinites-

imal variations of the Schrödinger potential U(x) or ~. Infinitesimal variations of

the resolvent ω(x) can be decomposed on the basis of “meromorphic forms” vk(
α
x),

k = 1, . . .; we set these forms to be dual to special cycles with the duality kernel being

the Bergman kernel. It turns out that the classical ~ = 0 formulas retain their form

for ~ 6= 0.

6.1 Variation of the resolvent

We consider an infinitesimal polynomial variation:

U → U + δU, ~ → ~+ δ~.

Since U = V ′2/4− ~V ′′/2− P , we have

δU =
V ′

2
δV ′ − ~

2
δV ′′ − δ~

2
δV ′′ − δP. (6.1)

We can consider variations of V ′(z) w.r.t. the higher times tk, k = 1, . . ., as well:

δV ′(x) =
∑

k=1

δtk x
k−1. (6.2)

Then, for k ≤ d+1, δP is of degree at most d−1 whereas for k > d+1 the polynomial

δP has the degree at most k − 2.

Computing δ (ψ′
α(x)/ψα(x)), we obtain

δ (ψ′
α(x)/ψα(x)) =

1

~2 ψ2
α(x)

∫ x

∞α

ψ2
α(x

′)

(
δU(x′)− 2

δ~

~
U(x′)

)
dx′, (6.3)

and for ω(
α
x) = V ′(x)/2 + ~ψ′

α(x)/ψα(x) we have

δω(
α
x) =

δV ′(x)

2
+ δ~

ψ′
α(x)

ψα(x)
+

1

~ψ2
α(x)

∫ x

∞α

ψ2
α(x

′)

(
δU(x′)− 2

δ~

~
U(x′)

)
dx′. (6.4)

6.2 Variations w.r.t. “flat” coordinates

We choose a system of “flat” coordinates on our genus-(d − 1) manifold:

ǫ1, . . . , ǫd−1, t0, t1, . . . . (6.5)
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6.2.1 Variations w.r.t. the filling fractions

For the filling fraction δǫα we have δV ′ = 0 and thus

δU(x) = −δP (x) (6.6)

where deg δP ≤ d− 2, so we can decompose it in the basis of hα:

δP (x) =
∑

α′

cα′ hα′ . (6.7)

So, from (6.4), we have

δω(x) = −
∑

α′

cα′ vα′(x), (6.8)

and because 2iπǫα′ =
∮
Aα′

ω, we obtain

2iπ δα,α′ =

∮

Aα′

δω = −
∑

α′′

∮

Aα′

cα′′ vα′′ = −cα′ (6.9)

Therefore δU(x)/δǫα = 2iπhα(x) and

δǫαω(
β
x) = 2iπ vα(

β
x) =

∮

Bα

B(
β
x, z) dz. (6.10)

The flat coordinate ǫα is dual to the holomorphic form vα, which is itself dual to

the cycle Bα:
ǫα =

1

2iπ

∮

Aα

ω, δǫαω = 2iπ vα =

∮

Bα

B. (6.11)

6.2.2 Variation w.r.t. t0

We have

δU(x) = −δP (x) = −td+1 x
d−1 +Q(x), (6.12)

where degQ ≤ d− 2. Using Eq. (6.4) we obtain

δω(
α
x) =

1

ψ2
α(x)

∫ x

∞α

(−td+1x
′d−1 +Q(x′))ψ2

α(x
′) dx′, (6.13)

and the polynomial Q must be chosen such that
∮
Ai
δω = 0 We therefore have

δω(
α
x) = − td+1Kd−1(

α
x)

= −td+1

(
K̂d−1(

α
x)−

d−1∑

β=1

vβ(
α
x)

∮

Aβ

K̂d−1(x
′) dx′

)

= vd(
α
x), (6.14)
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where

K̂k(
α
x) =

1

ψ2
α(x)

∫ x

∞α

x′k ψ2
α(x

′) dx′, (6.15)

and Kk(
α
x) is the kth term in the large z expansion of K(

α
x, z) = −∑∞

k=0
Kk(

α
x,z)

zk+1 com-

puted in theorem 4.2. From theorem 4.4 we have G(x,∞α) = ηαtd+1Kd−1(
α
x). This

shows that

δt0ω(
α
x) =

1

2
(G(

α
x,∞d̃+

)−G(
α
x,∞d̃−

)) =

∫ ∞
d̃+

∞
d̃−

B(
α
x, z) dz. (6.16)

The integral is taken here over the last, dth B̃-cycle.

The flat coordinate t0 is then dual to the 3rd kind meromorphic form −2G(
α
x,∞·),

which is itself dual to the cycle [∞d̃−
,∞d̃+

]:

t0 =

∮

CD
ω(z)dz, δt0ω(

α
x) =

∫ ∞
d̃+

∞
d̃−

B(
α
x, z) dz. (6.17)

6.2.3 Variations w.r.t. tk, k = 1 . . .. The two-point correlation function.

Because

tk =

∮

CD
~ψ′(z)/ψ(z)z−kdz, k = 0, 1, . . . ,

the conditions ∂tk/∂tr = δk,r and ∂tk/∂ǫβ = 0 imply

∮

CD

∂

∂tr

(
~
ψ′(z)

ψ(z)

)
z−kdz = δk,r;

∮

Aβ

∂

∂tr

(
~
ψ′(z)

ψ(z)

)
dz = 0, (6.18)

and from the general form (6.3) of variation, we conclude that (cf. (3.12) and (3.13))

∂

∂tr

(
~
ψ′
α(x)

ψα(x)

)
= vd+r(

α
x). (6.19)

In turn, we have the following lemma.

Lemma 6.1

vd+r(
α
x) =

1

2iπ

∮

CD>x
B(

α
x, z)

zr

r
dz, r = 1, . . . . (6.20)

proof:

That the expression in (6.20) has the desired structure follows from the explicit

form of the kernel B; we need only to verify the normalization conditions. Vanishing

of A-cycle integrals is obvious; we must verify

δd,l =
1

2iπ

∮

CD
x−lvd+r(x)dx =

1

(2iπ)2

∮

CD>x
dz

∮

CD
dx
zr

r
B(z, x)x−l. (6.21)
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Interchanging the order of integration contours and using that x−lB(z, x) ∼ x−l−2 as

x→ ∞, we observe that the only nonzero contribution comes from the double pole at

x = z, which gives

1

2iπ

∮

CD
dx x−l

(
∂

∂z

zr

r

)∣∣∣∣
z=x

=
1

2iπ

∮

CD
dxxr−l−1 = δr,l. �

�

We now define the operator of the loop insertion

∂

∂V (y)
:=

∞∑

r=1

ry−r−1 ∂

∂tr

applying which to ~ψ′/ψ, we obtain

∂

∂V (y)

(
~
ψ′
α(x)

ψα(x)

)
=

∞∑

r=1

y−r−1

∮

y>CD
B(

α
x, z)zrdz, (6.22)

and since
∮
CD B(

α
x, z)dz = 0, we add the term with r = 0 into the sum obtaining

∮

y>CD
B(

α
x, z)

1

y − z
dz

in the right-hand side. Note that the point y lies between some infinity, say, ∞β and

the integration contour CD. Pulling the contour of integration through the point y

to infinity we obtain zero due to the asymptotic conditions for B(
α
x,

β
z), so the only

nonvanishing contribution comes from the residue at y = z, which eventually gives

∂

∂V (y)

(
~
ψ′
α(x)

ψα(x)

)
= −1

2
B(

α
x,

β
y). (6.23)

Correspondingly, since ∂
∂V (y)

V ′(x) = 1
(y−x)2 , we obtain for the two-point correlation

function W
(0)
2 (x, y):

W
(0)
2 (

α
x,

β
y) :=

∂

∂V (y)
ω(

α
x) = −1

2
B(

α
x,

β
y) +

1

2(y − x)2
. (6.24)

6.3 Variation of higher correlation functions

Note that for all the above variations w.r.t. the flat coordinates, we have a cycle δω∗

and a (sector-independent) function Λ∗
δω such that

δω(
α
x) =

∫

δω∗
B(

α
x, z) Λ∗

δω(z) dz. (6.25)

The theorem below allows computing infinitesimal variations of any W
(h)
n under a

variation of the Schrödinger equation.
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Theorem 6.1 Under an infinitesimal deformation U → U + δU , we have:

δW (h)
n (

α1
x 1, . . . ,

αn
x n) =

∫

δω∗
W

(h)
n+1(

α1
x 1, . . . ,

αn
x n, x

′) Λ∗(x′) dx′ (6.26)

where (δω∗,Λ∗
δω) is the dual cycle to the deformation of the resolvent ω → ω + δω.

proof:

We prove this theorem by induction. We begin with the loop equation for

W
(h)
n (

α
x, J):

(
2~
ψ′
α(x)

ψα(x)
+ ~∂x

)
W (h)
n (

α
x; J) + U (h)

n (
α
x,

α
x; J) = P (h)

n (x, J). (6.27)

Taking a variation δ w.r.t. any of the flat coordinate, we have
(
2~
ψ′
α(x)

ψα(x)
+ ~∂x

)
δW (h)

n (
α
x, J) +

(
2δ~

ψ′
α(x)

ψα(x)

)
W (h)
n (

α
x, J) + δU (h)

n (
α
x,

α
x; J)

= δP (h)
n (x, J), (6.28)

where δP
(h)
n (x, J) is a polynomial in x of degree at most d−2. Here both δU

(h)
n (

α
x,

α
x; J)

and 2δ~ψ
′
α(x)
ψα(x)

=
∫
δω∗ 2B(

α
x, x′)Λ∗(x′)dx′ can be expressed by the induction assumption

in the dual-cycle-integration form; meanwhile

δU (h)
n (

α
x,

α
x; J) =

∫

δω∗
U

(h)
n+1(

α
x,

α
x; J, x′)Λ∗(x′)dx′ −

∫

δω∗
2B(

α
x, x′)Λ∗(x′)dx′ ·W (h)

n (
α
x, J),

(6.29)

because no term containing the two-point correlation function W
(0)
2 (

α
x, x′) enters

δU
(h)
n (

α
x,

α
x; J).

Using the loop equation of form (6.27) relating W
(h)
n+1(

α
x; J, x′) and U

(h)
n+1(

α
x,

α
x; J, x′),

we observe that the second term in the r.h.s. of (6.29) cancels the contribution of

2δ~ψ
′
α(x)
ψα(x)

, and we obtain that

(
2~
ψ′
α(x)

ψα(x)
+ ~∂x

)(∫

ω∗
W

(h)
n+1(

α
x, J, x′)Λ∗(x′)dx′ − δW (h)

n (
α
x, J)

)

= δP (h)
n (x, J)−

∫

ω∗
P

(h)
n+1(x, J, x

′)Λ∗(x′)dx′

=
d−1∑

i=1

αi(J) hi(x) (6.30)

with the r.h.s. being a polynomial in x of degree not higher than d − 2 expressed in

the basis of the polynomials hi(x). Using 6.4, we have

∫

ω∗
W

(h)
n+1(

α
x, J, x′)Λ∗(x′)dx′ − δW (h)

n (
α
x, J) =

d−1∑

i=1

αi(J) vi(x) (6.31)
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but since both W
(h)
n (x, J) and W

(h)
n+1(x, J, x

′) have vanishing A-cycle integrals, we have

that αi = 0, i.e.

δW (h)
n (

α
x, J) =

∫

ω∗
W

(h)
n+1(

α
x, J, x′)Λ∗(x′)dx′ (6.32)

�

Corollary 6.1

∂W
(h)
n (J)

∂ǫα
=

∮

Bα

W
(h)
n+1(J, x

′)dx′ for any n ≥ 0, h ≥ 0.

7 Classical and quantum geometry: summary

In the table below we summarize the comparison between items in classical algebraic

geometry and their quantum counterparts.
| classical ~ = 0 | quantum

plane curve: | E(x, y) =
∑

i,j Ei,jx
i yj | E(x, y) =

∑
i,j Ei,jx

i yj , [y, x] = ~

| E(x, y) = 0 | E(x, ~∂x)ψ = 0
hyperelliptical | y2 = U(x) | y2 − U(x) , [y, x] = ~,
plane curve: | degU = 2d | ~2ψ′′ = U ψ

Potential: | V ′(x) = 2(
√
U(x))+

resolvent: | ω(x) = V ′(x)/2 + y. | ω(
α
x) = V ′(x)/2 + ~

ψ′
α(x)
ψα(x)

.

physical sheet(s): | y ∼∞ −1
2
V ′(x), ω ∼ t0/x | ~ψ′/ψ ∼∞ −1

2
V ′(x), ω ∼ t0/x

| | sectors where ψ ∼ e−
V
2~

branchpoints: | simple zeroes of U(x) | half-lines of accumulations
| U(ai) = 0, U ′(ai) 6= 0 | of zeroes of ψ
| i = 1, . . . , 2d+ 2 | Li, i = 1, . . . , 2d+ 2

double points: | double zeroes of U(x) | half-lines without accumulations
| U(âi) = 0, U ′(âi) = 0 | of zeroes of ψ (?)

genus g = −1 | degenerate surface | ψ eV/2~ =polynomial
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| classical ~ = 0 | quantum
Aα-cycles | surround pairs of | surround pairs of half-lines
α = 1, . . . , g | branchpoints | of accumulating zeroes
extra Ad-cycle | surrounds last pair of | surrounds last pair of half-lines
α = d | branchpoints | of accumulating zeroes
B-cycles | Ai ∩ Bj = δi,j

Holomorphic | vi(x) =
−hi(x)
2
√
U(x)

| vi(
α
x) = 1

~ψ2
α(x)

∫ x
∞α

ψ2
α(x

′) hi(x
′) dx′

forms, 1st kind | hi =polynomials, deg hi ≤ d− 2
differentials | normalized:

∮
Aα
vi(x) dx = δα,i, α = 1, . . . , d− 1

Period matrix | τi,j =
∮
Bj
vi , i, j = 1, . . . , g , τi,j = τj,i

Filling fractions | 2iπ ǫα =
∮
Aα
ω(x)dx , α = 1, . . . , g, ǫd = t0 −

∑
g

α=1 ǫα
3rd kind form | G(x, z) ∼x→z 1/(z − x)

| G(
α
x,

β
z) = (2ω(

β
z)− V ′(z)− ~∂z)K(

α
x, z)

Recursion kernel | K(
α
x, z)

| K(
α
x, z) = K̂(

α
x, z)−∑i vi(

α
x)Ci(z)

| Ci(z) =
∮
Ai
K̂(x′, z)dx′

| K̂(x, z) = 1
z−x

1

2
√
U(x)

| K̂(
α
x, z) = 1

~ψ2
α(x)

∫ x
∞α

ψ2
α(x

′)dx′

x′−z

Bergman kernel | B(
α
x,

β
z) = −1

2
∂z G(

α
x,

β
z)

2nd kind differential | B(
α
x,

α
z) ∼ 1/2(x− z)2

Symmetry: | B(
α
x,

β
z) = B(

β
z,

α
x)

|
∮
Ai
B(x,

β
z)dx = 0

|
∮
Bi
B(x,

β
z)dx = 2iπ vi(

β
z)

Meromorphic | R(x)dx = r(x)dx

2
√
U(x)

| R(
α
x) = 1

~ψ2
α(x)

∫ x
∞α

r(x′)ψα2(x′) dx′

forms | r(x) =rational with poles ri, r(x) = O(xd−2)
| | Resri r(x

′)ψ2(x′) = 0

Higher | W
(h)
n+1(

α
x, J) =

∑
i

1
2iπ

∮
Ci K(

α
x, z) dz

(
W

(h−1)
n+2 (z, z, J)

correlators | +
∑′

s+s′=h, I⊎I′=JW
(s)
1+|I|(z, I)W

(s′)
1+|I′|(z, I

′)
)

| where Ci surrounds the branchpoint Li, ∪i 1
2iπ

∮
Ci =

∮
CD

Symmetry | W
(g)
n (x1, x2, . . . , xn) =W

(g)
n (xσ(1), xσ(2), . . . , xσ(n)) , σ ∈ Sn

Variations and | U(x) → U(x) + δU(x)

dual cycle | δU∗: δω(
α
x) =

∫
δU∗ B(

α
x, x′) ΛδU(x

′) dx′

δV ′ =
∑
δtk x

k−1 | δtkω(
α
x) =

∮
CD B(

α
x, x′) x

′k

k
dx′

variation δt0 | δt0ω(
α
x) =

∫∞
d̃+

∞
d̃−

B(
α
x, x′) dx′

variation δǫi | δǫiω(
α
x) =

∮
Bi
B(

α
x, x′) dx′

Variations of | δW
(h)
n (x1, . . . , xn) =

∫
δU∗ W

(h)
n+1(x1, . . . , xn, x

′) ΛδU(x
′) dx′

higher correlators |

36



8 Application: Matrix models

The main reason for introducing W
(h)
n is that they satisfy the loop equations for the

random β-eigenvalue ensembles. We can therefore identify them with the correlation

functions (resolvents) of these ensembles.

Consider a (possibly formal) matrix integral:

Z =

∫

EN,β

dM e
−N

√
β

t0
tr V (M)

(8.1)

where V (x) is some polynomial, and where EN,1 = HN is the set of hermitian matrices

of size N , EN,1/2 is the set of real symmetric matrices of size N and EN,2 is the set of

quaternion self dual matrices of size N (see [17]).

Alternatively, we can integrate over the angular part and get an integral over eigen-

values only [17]:

Z =

∫
dλ1 . . . dλN |∆(λ)|2β

N∏

i=1

e
−N

√
β

t0
V (λi), (8.2)

where ∆(λ) =
∏

i<j(λj − λi) is the Vandermonde determinant.

We can then generalize the matrix model to arbitrary values of β taking the integral

(8.2) as a definition of the β-model integral. For this, we take

~ =
t0
N

(√
β − 1√

β

)
. (8.3)

Notice that ~ = 0 correspond to the Hermitian case β = 1, and ~ → −~ corresponds

to β → 1/β.

8.1 Correlation functions and loop equations

We define the correlation functions (the resolvents)

Wk(x1, . . . , xk) = βk/2

〈
∑

i1,...,ik

1

x1 − λi1
. . .

1

xk − λik

〉

c

(8.4)

and

W0 = F = logZ. (8.5)

When considering variations in the potential V (x), we again assume these resolvents

to satisfy the asymptotic conditions sectorwise, which means that they are defined also

sectorwise.

And we assume (this is automatically true if we are considering formal matrix

integrals), that there is a large N expansion of the type (where we assume ~ = O(1)):

Wk(
α1
x 1, . . . ,

αk
x k) =

∞∑

h=0

(N/t0)
2−2h−kW

(h)
k (

α1
x 1, . . . ,

αk
x k) (8.6)

37



W0 = F =

∞∑

h=0

(N/t0)
2−2hW

(h)
0 ≡

∞∑

h=0

(N/t0)
2−2hFh. (8.7)

The loop equations are obtained by integration by parts, for example:

0 =
∑

i

∫
dλ1 . . . dλN

∂

∂λi

(
1

x− λi
|∆(λ)|2β

∏

j

e
−N

√
β

t0
V (λj)

)
(8.8)

gives:

0 =
∑

i

〈
1

(x− λi)2
+ 2β

∑

j 6=i

1

x− λi

1

λi − λj
− N

√
β

t0

V ′(λi)

x− λi

〉

=
∑

i

〈
1

(x− λi)2
+ β

∑

j 6=i

1

x− λi

1

x− λj
− N

√
β

t0

V ′(λi)

x− λi

〉

=
∑

i

〈
1− β

(x− λi)2
+ β

∑

j

1

x− λi

1

x− λj
− N

√
β

t0

V ′(λi)

x− λi

〉

= (β − 1)
1√
β
W ′

1(x) + β(
1

β
W 2

1 (x) +
1

β
W2(x, x))

−N
√
β

t0

(
1√
β
V ′(x)W1(x)−

∑

i

〈
V ′(x)− V ′(λi)

x− λi

〉)

(8.9)

We define the polynomial

P1(x) =
√
β
∑

i

〈
V ′(x)− V ′(λi)

x− λi

〉
= (V ′W1)+. (8.10)

We thus have the loop equation of [3]

W 2
1 (x) + ~

N

t0
W ′

1(x) +W2(x, x) =
N

t0
(V ′(x)W1(x)− P1(x)) (8.11)

Using the expansion (8.6) we come to the Ricatti equation

W
(0)
1 (x)2 + ~ ∂xW

(0)
1 (x) = V ′(x)W

(0)
1 (x)− P

(0)
1 (x) (8.12)

satisfied by ω(x):

W
(0)
1 (x) = ω(x). (8.13)

The correlation functions of β-eigenvalue models obey therefore the topological recur-

sion of definition 5.1.
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8.2 Variation w.r.t. ~

In this subsection, we use the analogy with the β-eigenvalue ensemble to hint the

possible form of the last remaining building block of our construction, which is the

variation w.r.t. ~, the exponent of the Vandermonde determinant in (8.2). Up to

irrelevant multipliers, we can consider β(∂/∂β) instead of ~(∂/∂~), for which we have

β
∂

∂β
logZ ∼ 2β

Z

∫
dλ1 . . . dλN ∆(λ)2β log |∆(λ)|

N∏

i=1

e
−N

√
β

t0
V (λi), (8.14)

so the logarithm of the Vandermonde determinant appears.

It seems impossible to construct such a term from W1(
α
x), but we can use the two-

point correlation function W2(
α
x,

γ
y) instead. Adopting a β-model inspired definition of

W2(
α
x,

β
y) as a two-resolvent correlation function (not necessarily connected),

W2(x, y) =
1

Z

∫
DNλ

N∑

i=1

1

x− λi

N∑

j=1

1

y − λj
|∆(λ)|~Ne−

N
√

β
t0

V (λ)

we then introduce the regularization (both IR and UV, if speaking in the physical

terms). At this point, we also split all the eigenvalues λi into clusters each of which

corresponds to some sector Sγ; for each term 1/(y − λi) we then integrate w.r.t. y

from Λγ to x + δγ along the straight lines all of which are parallel; the regularization

parameters depend only on the sector number γ, and the limit of removed regularization

corresponds to Λγ → ∞γ and δγ → 0. We then obtain

2β

Z

∫ x+δγ

Λγ

dξW2(
α
x,

γ

ξ) ∼

∼
∫
dλ1 . . . dλN ∆(λ)2β

N∑

i=1

1

x− λi

∑

γ

ǫγ∑

jγ=1

∫ x+δγ

Λγ

dξ

ξ − λjγ

N∏

i=1

e
−N

√
β

t0
V (λi)

=

∫
dλ1 . . . dλN ∆(λ)2β

N∑

i=1

1

x− λi
×

×
∑

γ

ǫγ∑

jγ=1

[
log
∣∣x+ δγ − λjγ

∣∣− log |Λγ|+O(1/Λγ)
] N∏

i=1

e
−N

√
β

t0
V (λi). (8.15)

We now want to perform the integration over the variable x to obtain the expression

(8.14). Obviously, we need to choose the integration contour in a rather specific way:

we want it to encircle all the poles in λi in the variable x leaving outside all the

logarithmic cuts from ∞γ to λi + δγ in the corresponding sector (see Fig. 8.2). Given

such a contour, we can then perform the integration w.r.t. x by residues at the points λi

(recall that in the eigenvalue model pattern we do not have boundaries between sectors
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inside the complex plane as yet; they appear because of the collective effect of taking

into account the λ poles and due to sectorwise regularization chosen). Evaluating the

integral over x in (8.15) by residues at λi, we obtain

2β

Z

∫
dλ1 . . . dλN ∆(λ)2β

[ N∑

i=1

∑

γ

ǫγ∑

jγ=1

log
∣∣λi + δγ − λjγ

∣∣−

−N
∑

γ

ǫγ log |Λγ|+O(1/Λγ)
] N∏

i=1

e
−N

√
β

t0
V (λi)

=
2β

Z

∫
dλ1 . . . dλN ∆(λ)2β

∣∣∣∣∣log
∏

i 6=j
(λi − λj + δγ)

∣∣∣∣∣−

−2βN
∑

γ

ǫγ log |Λγ|+ 2β
∑

γ

ǫγ log |δγ|, (8.16)

where the first term in the r.h.s. gives the desired integral (8.14) as δγ → 0, and the

last two terms are divergent in the limit of regularization removed. These two terms

depend however only on the occupation numbers therefore contributing to potential-

independent part of F0 only and we can remove them by the proper normalization.

• •• •• •

• •
• •

••••••

•• ••
•• •• ••

••
••

• •
• •
• •• •• •

Figure 7: The origin of the integration contour CD in the matrix-model concept. The
inner dots are λi and the outer dots are λi + δγ (γ = 0, 2, 4, 6); thin arrowed lines are
the logarithmic cuts.

9 The free energy

We use the variations and theorem 5.4 to define the Fh.
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9.1 The operator Ĥ

Theorem 5.4 gives:

(2− 2h− n− ~ ∂~)W
(h)
n =

(
t0 ∂t0 +

d+1∑

k=1

tk ∂tk +

g∑

i=1

ǫi∂ǫi

)
W (h)
n (9.1)

In section 6, we expressed the derivatives of W
(h)
n as integrals of W

(h)
n+1 up to the action

of ~ ∂
∂~
,

(2− 2h− n− ~ ∂~)W
(h)
n = Ĥ.W

(h)
n+1 = Ĥ.

∂

∂V
W (h)
n (9.2)

where Ĥ is the linear operator acting as follows:

Ĥ.f(x) = t0

∮

B̃d

f +

d+1∑

j=1

∫

CD

tj x
j

j
f +

g∑

i=1

ǫi

∮

Bi

f. (9.3)

We define W
(h)
0 = Fh for n = 0 and h ≥ 2 as

Definition 9.1 The free energy Fh for h ≥ 2 is the functions for which

(2− 2h− ~ ∂~)Fh = Ĥ.W
(h)
1 (9.4)

9.2 The derivative ~ ∂
∂~

The matrix-model considerations in preceding section imply that constructing the

derivative in ~ of the correlation function W
(h)
n (J) would involve resolvents of order

n+ 2. That is,

~
∂

∂~
W (h)
n (J) =

∫

CDξ

dξ

[∫ ξ

∞
W

(h−1)
n+2 (ξ

′
, ξ, J)dξ′+

+

h∑

r=0

∑

I⊆J

∫ ξ

∞
W

(r)
|I|+1(ξ

′
, I)dξ′ ·W (h−r)

n−|I|+1(ξ, J/I)

]
, (9.5)

where ξ must be taken to be an “innermost” variable in the sense that taking into

account that
∫ ξ
B(ξ′, y) = G(ξ, y), we replace all the appearances

⇒
ξ ξ′
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and

⇒
ξ ξ′

with no additional factors.

Note that the sum in (9.5) ranges all cases, not necessarily stable ones, so we begin

with studying nonstable contributions to stable cases (2h− 2 + n > 0). Note that all

these contributions then come from the second term in (9.5).

9.2.1 Case r = 0, I = ∅ and r = h, I = J

We consider the situation when n ≥ 1. We can then fix x1 to be the root of all the

subtrees composed from the K-propagators and ξ can then be the variable of any of

external B-legs. Then, the contribution in W
(h)
n (J) comprises all the insertions

η

ξ∫ ξ
W

(0)
1

+
η

ξ
W

(0)
1

and η

ξ∫ ξ
W

(0)
1

+
η

ξ
W

(0)
1

Let us consider the first case; the second one can be treated analogously. We push the

integration over ξ through the one over η in the second diagram and as the result we

obtain

η

ξ∫ ξ
W

(0)
1

+
η

ξ
W

(0)
1

−
η

ψ′

ψ

Here the sum of the first two terms contains the integral of the total derivative of

the function
∫ ξ
W

(0)
1 (ξ′)dξ′G(η, ξ), and since G(η, ξ) ∼ O(ξ−1) and

∫ ξ
W

(0)
1 (ξ′)dξ′ ∼∫ ξ

t0dξ
′/ξ′ ∼ t0 log |ξ|, this contribution vanishes. Only the third contribution coming

from the residue at ξ = η survives, and this contribution is nothing but minus the

action of the Ĥ operator on the external leg B(η, ξ), so

η

ξ
Ĥ.

−
η

ψ′

ψ

= 0.

So, the total contribution of the two cases r = 0, I = ∅ and r = h, I = J exactly

cancels the action of the Ĥ operator.
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9.2.2 Case r = 0, I = {x1}

We begin with the identity
∫

x>CDξ
>y

G(
α
x, ξ)K(ξ, y) = −K(

α
x, y). (9.6)

(Here and hereafter inequalities of the type x > CDξ
> y indicates the mutual positions

of points and integration contours.) Indeed, representing G(
α
x,

γ

ξ) = ψ2
γ(ξ)∂ξ

K(
α
x,ξ)

ψ2
γ(ξ)

and

integrating by parts, we obtain

∑

γ

K(
α
x, ξ)K(

γ

ξ, y)
∣∣∣
∞γ̃+

∞γ̃−

−
∫

x>CDξ
>y

K(
α
x, ξ)

[
1

ξ − y
+
∑

j

hj(ξ)Cj(y)

]
,

the substitution apparently gives zero, and in the second term only the residue at

ξ = y contributes thus producing (9.6). An obvious corollary is the second convolution

formula ∫

x>CDξ
>y

G(
α
x, ξ)B(ξ,

β
y) = −B(

α
x,

β
y). (9.7)

In the case r = 0, I = {x1}, we have the diagram

x1
ξ

W
(h)
n (ξ, J/{x1}) = −W (h)

n (J)

9.2.3 Case r = h, I = J/{xn}

Here, we need another identity
∫

x,y>CDξ

G(
α
x, ξ)B(ξ,

β
y) = 0. (9.8)

to obtain it, we represent the functions G and B through the kernel K, that is, we

have
∫

x,y>CDξ

G(
α
x, ξ)B(ξ,

β
y) =

=

∫

x,y>CDξ

(
∂ξ − 2

ψ′
γ(ξ)

ψγ(ξ)

)
K(

α
x, ξ)∂ξ

(
∂ξ − 2

ψ′
γ(ξ)

ψγ(ξ)

)
K(

β
y, ξ)

= K(
α
x, ξ)B(

β
y,

γ

ξ)
∣∣∣
∞+

∞−
−
∫

x,y>CDξ

K(
α
x, ξ)

(
∂ξ + 2

ψ′
γ(ξ)

ψγ(ξ)

)
∂ξ

(
∂ξ − 2

ψ′
γ(ξ)

ψγ(ξ)

)
K(

β
y, ξ).

Here the substitution gives zero, and the third-order differential operator acting on the

kernel K(
β
y, ξ) is again the Gelfand–Dikii operator (4.35) that does not depend on the
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sector γ. The integrand is also obviously regular at all zeros of ψ-functions, so the total

integration over Ã-cycles just gives zero.

Therefore, the contribution of the case r = h, I = J/{xn} is zero, and the total

contribution of all the unstable cases together with the action of the Ĥ-operator just

gives minus one times the original contribution W
(h)
n (J).

9.3 Examples of application of ~ ∂
∂~

9.3.1 Reconstructing W
(0)
n (J)

We now apply formula (9.5) to reconstruct the correlation functionW
(0)
n (J). In the zero

genus case, we must take into account only the nonconnected contributions (the second

term in (9.5)) into account; we choose the root of the first term,
∫ ξ
∞W

(r)
|I|+1(ξ

′
, I)dξ′,

to be x1, the point ξ is then the end of some other (nonrooted) leg G(η, ξ) of the

first diagram; for the second diagram we choose the root to be at the end ξ of leg

with the corresponding propagator K(ξ, ρ). As the result of the integration over ξ,

we obtain using (9.6) that these two diagrams are sewed along the propagator K(η, ρ)

thus producing the connected diagram with the maximum subtree of propagators K

rooted at the external point x1. We may now ask the question how many times the

given diagram can be obtained as a composition of two diagrams in the formula (9.5)?

We obtain this diagram by first breaking it into two parts by cutting some of internal

arrowed lines (including also the external line K(x1, κ) if we take into account the

nonstable contributions) and then sewing again along the same line; obviously, we

obtain this diagram as many times as the total number of arrowed lines (with the

minus sign from (9.6)), which is 2 − n for W
(0)
n (J). So, we see that adopting the

definition (9.5) for the action of the operator ~ ∂
∂~
, we obtain

(
~
∂

∂~
+ Ĥ.

∂

∂V

)
W (0)
n (J) = (2− n)W (0)

n (J), (9.9)

which is a particular case of formula (9.2).

9.3.2 Acting on W
(0)

2 (x1, x2)

Here, we consider the action on a nonstable correlation function W
(0)

2 (x1, x2) =

B(
α1
x 1,

α2
x 2)− δα1,α2

(x1−x2)2 . Excluding the terms that compensate the action of Ĥ, we have

that the action of ~ ∂
∂~

gives
∫

x1>CDξ
>x2

dξ G(
α1
x 1, ξ)

(
B(ξ,

α2
x 2)−

1

(ξ − x2)2

)
−
∫

x1,x2>CDξ

dξ
1

x1 − ξ
B(

α2
x 2, ξ) + x1 ↔ x2

= −2B(
α1
x 1,

α2
x 2) +B(

α1
x 1,

α2
x 2) +B(

α2
x 2,

α1
x 1) = 0, (9.10)

which again is in accordance with formula (9.2).
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9.3.3 Acting on F1

Here we demonstrate the first case of “reconstructing” the free energy term (although

this is not true, to obtain the genuine term F1 we need other methods, which are still

missing; we must however demonstrate that applying formula (9.2) we get zero perhaps

up to some irrelevant regularizing factors). In this case, no nonstable terms contribute;

the only contribution comes from the first term in (9.5), which gives

(
~
∂

∂~
+ Ĥ.

∂

∂V

)
F1 =

∫

CDξ

dξ

(
G(ξ, ξ)− 1

ξ − ξ

)

=

∫

CDξ

dξ

[∫ ξ+δα

∞α

dξ′
∂

∂ξ

ψ2
α(ξ

′)/ψ2
α(ξ)− 1

ξ′ − ξ
+
∑

j

∫ ξ+δα

∞α

dξ′ hj(ξ
′)ψ2

α(ξ
′)

(
Cj(ξ)

ψ2
α(ξ)

)′
.

]

Integrating by parts in the second term, we obtain (up to terms of order O(δα))∫
CDξ

dξ hj(ξ)Cj(ξ), and the integrand is sector-independent and nonsingular at zeros of

ψα thus giving zero upon integration. In the first term, integrating by parts in the vari-

able ξ′ the term with 1/(ξ − ξ′)2) and taking into account that limξ′→ξ
1

ξ′−ξ

(
ψ2
α(ξ

′)
ψ2
α(ξ)

)
=

2ψ
′
α(ξ)
ψα(ξ)

, we obtain

∫

CDξ

dξ


−2

ψ′
α(ξ)

ψα(ξ)
+

∫ x+δα

∞α

dξ′
2ψ

′
α(ξ

′)ψα(ξ′)
ψ2
α(ξ)

− 2ψ
′
α(ξ)ψ

2
α(ξ

′)
ψ3
α(ξ)

ξ′ − ξ




=

∫

CDξ

dξ

[
−2

ψ′
α(ξ)

ψα(ξ)
+

∫ x+δα

∞α

dξ′
(

2

ξ′ − ξ

ψ′
α(ξ

′)ψα(ξ
′)

ψ2
α(ξ)

+
ψ2
α(ξ

′)

ξ′ − ξ

(
1

ψ2
α(ξ)

)′)]

=

∫

CDξ

dξ

[
−2

ψ′
α(ξ)

ψα(ξ)
+

∫ x+δα

∞α

dξ′
(

2

ξ′ − ξ

ψ′
α(ξ

′)ψα(ξ
′)

ψ2
α(ξ)

− ψ2
α(ξ

′)

ψ2
α(ξ)

1

(ξ′ − ξ)2

)]

=

∫

CDξ

dξ

[
−2

ψ′
α(ξ)

ψα(ξ)
+

∫ x+δα

∞α

2

ξ′ − ξ

ψ′
α(ξ

′)ψα(ξ
′)

ψ2
α(ξ)

dξ′ +
ψ2
α(ξ

′)

ψ2
α(ξ)

d
1

ξ′ − ξ

]

=

∫

CDξ

dξ

[
−2

ψ′
α(ξ)

ψα(ξ)
+

∫ x+δα

∞α

1

ξ′ − ξ

∂

∂ξ′
ψ2
α(ξ

′)

ψ2
α(ξ)

dξ′ +
ψ2
α(ξ

′)

ψ2
α(ξ)

d
1

ξ′ − ξ

]

=

∫

CDξ

dξ

[
−2

ψ′
α(ξ)

ψα(ξ)
+

1

ξ′ − ξ

ψ2
α(ξ

′)

ψ2
α(ξ)

∣∣∣∣
x+δα

∞α

]

=

∫

CDξ

dξ

(
1

δα
+O(δα)

)
,

and the result is a constant, which is divergent in the limit of regularization removed

but is otherwise independent on all the variables (the same phenomenon occurs when

calculating the corresponding action of the Ĥ operator on F1 in the standard matrix

models, see [4, 3]).
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9.3.4 Acting on W
(1)
1 (x)

In this case, we have two possible contributions: the one from nonstable graphs gives

W
(1)
1 (x) with the (desired) factor −1 whereas the second one would come from the first

term in (9.5) originated from W
(0)
3 term, that is,

∫

CDξ

dξ

∫

CDη

dη K(
α
x, η)G(η, ξ)B(η, ξ), (9.11)

where the contour of integration over η goes between the points ξ and ξ. We set

integrals of this type to be zero, which provides the last required prescription for the

diagrammatic technique describing the free energy terms Fh.

9.4 The term Fh

For the stable cases (h 6= 0, 1), we can now formulate the diagrammatic technique for

the term Fh. We need the diagrams describing the stable terms W
(r)
1 (ξ) and W

(h−r)
1 (ξ)

with 1 ≤ r ≤ h− 1 and W
(h−1)
2 (ξ, ξ).

(2h− 2)Fh = W
(h−1)
2

•
•
ρ

η −
h−1∑
r=1

W
(r)
1

•
ρ W

(h−r)
1

•
η

∫ ξ

Here in the first term the sum ranges all the diagrams contributing to W
(h−1)
2 that

have distinct vertices to which the external legs are attached; we then amputate both

these legs and joint the vertices η and ρ (the ρ vertex is always the first three-valent

vertex in the rooted tree) by the propagator K(η, ρ). We took into account already

the integration over ξ thus obtaining an extra minus sign. We cannot perform this

integration that easily in the second term in which the integration over ξ is such that

ρ > CDξ
> η and the symbol

∫ ξ
indicates that we must insert the integration

∫

ρ>CDξ
>η

dξ

∫ ξ+δα

∞α

dξ′K(
α

ξ′, ρ)K(
α

ξ, η)

between the integrations over the variables ρ and η.

10 Conclusion

We have defined quantum version of algebraic geometry notions, which allows us to

solve the loop equations in the arbitrary β-ensemble case.
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The notion of branchpoints become “blurred”, a branchpoint is no longer a point,

but an asymptotic accumulation line along which we integrate instead of taking the

residue at the branch point.

Another surprising property pertains to the cohomology theory, which makes sense

only if the cycle integral of any form depends only on the homology class of the cycle,

i.e., we need all forms to have vanishing residues at the zeros si. This “no-monodromy”

condition is automatically satisfied for our forms coming from the Schrödinger equation

and it is equivalent to the set of Bethe ansatz equations satisfied by si, similar to what

takes place in the Gaudin model [2].

In contrast to paper I, there is no explicit dependence on the chosen sector; however,

even the total number of A-cycles and rank of the period matrix may vary depend-

ing on the choice of cuts in the complex plane. This might pertain to that we do

not have actual finite-genus (classical) Riemann surface: analytical continuation may

never result in sewing the corresponding solutions to the Schrödinger equation, and we

therefore deal with different (finite-genus) sections of an ambient infinite-genus surface.

So, indeed, the genus is no longer deterministic.

Using the sectorwise approach, we can define the symplectic invariants; in Ap-

pendix D below we present the first nontrivial calculation of this sort: the dependence

of the leading term on the occupation numbers.

In this paper, we restricted ourselves to the case of hyperelliptic curves, i.e. second

order differential equations, that corresponds to 1-matrix model. The first straightfor-

ward generalization pertains to including the logarithmic potentials into consideration,

which would produce the Nekrasov functions nonperturbatively in the parameter ǫ2/ǫ1.

A more challenging problem is to generalize this approach to linear differential equa-

tions of any order, which would correspond to a 2-matrix β-ensemble model. In this

case, we are also presumably able to define the notions of sheets, branchpoints, forms,

and correlation functions. We expect also the preservation of the Bethe ansatz prop-

erty ensuring a no-monodromy condition claiming that all cycle integrals depend only

on the homology classes of cycles. The difference between the hyperelliptic case and

the general case is comparable to the difference between the patterns of papers [9] and

[6], i.e., the definition of the kernel K must be more involved and less explicit, but we

postpone this discussion for further publications.

It would be also interesting to see whether the quantities Fh possess a symplectic

invariance, or more precisely a “canonical invariance”, i.e., whether they are invariant

under any change (x, y) → (x̃, ỹ) such that [ỹ, x̃] = [y, x] = ~.
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A Appendix: Proof of theorem 5.2

We now prove theorem 5.2, that all W
(h)
n ’s satisfy the loop equation, i.e.,

P
(h)
n+1(x;

α1
x 1, . . . ,

αn
x n) = ~

(
2
ψ′
α(x)

ψα(x)
+ ∂x

)
W

(h)

n+1(
α
x,

α1
x 1, . . . ,

αn
x n)

+

h∑

r=0

′∑

I⊂J
W

(r)

|I|+1(
α
x, I)W

(h−r)
n−|I|+1(

α
x, J/I) +W

(h−1)

n+2 (
α
x,

α
x, J)

+
∑

j

∂xj

(
W

(h)

n (
α
x, J/{xj})δα,αj

−W
(h)

n (
αj

x j , J/{xj})
(x− xj)

)
(A.1)

is a polynomial in x of degree at most d− 2.

From the definition, we have (with U from (5.4))

W
(g)
n+1(

α
x, J) =

1

2iπ

∮

C
dz K(

α
x, z)

(
U

(g−1)
n+2 (z, z, J) +

∑

j

B(
αj

xj , z)W
(g)
n (z, J/{xj})

)
.

(A.2)

Acting by ~
(
2ψ

′
α(x)
ψα(x)

+ ∂x

)
on K(

α
x, z) gives 1/(x−z)+∑g

j=1 hj(x)Cj(z), and the second

part is obviously polynomial satisfying assertions of the theorem. Pulling the contour

of integration w.r.t. z to infinity (with x originally outside the integration contour)

and taking into account that the integral at infinity vanishes thanks to the asymptotic

conditions, we find that only the residue at z = x and the residue at z = xj in the

second term in the brackets give nonzero contributions; the result of integration reads

U
(g−1)
n+2 (

α
x,

α
x, J) +

∑

j

B(
αj

xj ,
α
x)W (g)

n (
α
x, J/{xj}) +

∑

j

∂

∂xj

W
(g)
n (J)

x− xj
,

so taking into account (5.3), we obtain the assertion of the theorem. �
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B Appendix: The symmetricity of W
(0)
3

Theorem B.1 The three-point function W
(0)
3 is symmetric

proof:

Introducing Y := −2~ψ′/ψ, W
(0)
3 is by definition

W
(0)
3 (

α0
x0,

α1
x1,

α2
x2)

=
1

iπ

∮

CD
dxK(

α0
x0, x)B(

α1
x1, x)B(

α2
x2, x)

=
1

4iπ

∮

CD
dxK0G

′
1G

′
2

=
1

4iπ

∮

CD
dxK0 ((~K

′′
1 + Y K ′

1 + Y ′K1)(~K
′′
2 + Y K ′

2 + Y ′K2))

=
1

4iπ

∮

CD
dxK0 ( ~

2K ′′
1K

′′
2 + ~Y (K ′

1K
′′
2 +K ′′

1K
′
2) + ~Y ′(K ′′

1K2 +K ′′
2K1)

+Y 2K ′
1K

′
2 + Y Y ′(K1K

′
2 +K ′

1K2) + Y ′2K1K2 )

(B.1)

where we have introduced a shorthand notation Kp = K(xp, x), Gp = G(xp, x), all the

derivatives are w.r.t. x, and we omit indices indicating the sectors.

The combinations K0K1K2f(x), where f(x) is sector-independent (f =

1, U, U ′, . . .), vanish upon integration w.r.t. x because each of Ki is also sector-

independent w.r.t. x. We can then use the Ricatti equation Y 2
i = 2~Y ′

i + 4U to

replace Y 2
i by 2~Y ′

i and YiY
′
i by ~Y ′′

i , which gives

W
(0)
3 (x0, x1, x2)

=
1

4iπ

∮

CD
dxK0(~Y (K

′
1K

′′
2 +K ′′

1K
′
2) + ~Y ′(K ′′

1K2 +K ′′
2K1)

+2~Y ′K ′
1K

′
2 + ~Y ′′(K1K

′
2 +K ′

1K2) + Y ′2K1K2 )

=
1

4iπ

∮

CD
dxK0 (~Y (K

′
1K

′
2)

′ + ~Y ′(K1K2)
′′ + ~Y ′′(K1K2)

′ + Y ′2K1K2 )

=
1

4iπ

∮

CD
dx Y ′2K0K1K2 + ~(Y ′′K0(K1K2)

′ − (Y K0)
′K ′

1K
′
2 − (Y ′K0)

′(K1K2)
′)

=
1

4iπ

∮

CD
dx Y ′2K0K1K2 − ~((Y K0)

′K ′
1K

′
2 + Y ′K ′

0(K1K2)
′)

=
1

4iπ

∮

CD
dx Y ′2K0K1K2 − ~Y K ′

0K
′
1K

′
2 − ~Y ′(K0K

′
1K

′
2 +K ′

0K1K
′
2 +K ′

0K
′
1K2)

(B.2)

This expression is readily symmetric in x0, x1, x2 as claimed in theorem 5.3. �
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C Appendix: Proof of theorem 5.3

Theorem 5.3 Each W
(g)
n is a symmetric function of all its arguments.

proof:

The special case of W
(0)
3 was proved in appendix B above. The symmetricity of the

two-point correlation function W
(0)

2 was proved in Theorem 4.9.

For technical reason, it is easier to proceed with the proof for nonconnected corre-

lation functions. We introduce two types of them:

• the correlation function

̂
W

(h)
n (I) =

∑

partitions
{I1, . . . , Ik} of I

k∏

j=1

W (hj)
nj

(Ij) (C.1)

that comprises partitions of only stable (2hj + nj − 2 > 0) type with Ij 6= ∅;

• the correlation function

˜
W

(h)
n (I) =

∑

partitions
{I1, . . . , Ik} of I

k∏

j=1

W (hj)
nj

(Ij) (C.2)

that admits also two-point correlation functionsW
(0)

2 in the sums, 2hj+nj−2 ≥ 0,

with Ij 6= ∅;

The symmetricity of all
̂
W

(h′)
s (I) with s + 2h′ ≤ n + 2h obviously implies the

symmetricity of
˜
W

(h)
n (I)

It is obvious from the definition that
̂
W

(h)
n+1(

α0
x0,

α1
x1, . . . ,

αn
xn) is symmetric in

x1, x2, . . . , xn, and therefore we need to show that (for n ≥ 1):

̂
W

(h)
n+1(

α0
x0,

α1
x1, J)− ̂

W
(h)
n+1(

α1
x1,

α0
x0, J) = 0, (C.3)

where J = {α2
x2, . . . ,

αn
xn}.

The proof is by recursion on −χ = 2h− 2 + n.

Assume that all
̂
W

(h′)
k and

˜
W

(h′)
k with 2h′+k−2 ≤ 2h+n are symmetric. We have:

̂
W

(h)
n+1(

α0
x0,

α1
x1, J)

=
1

2πi

∮

CDx>y

dxK(
α0
x0, x)

(
˜
W

(h−1)
n+2 (x, x, x1, J) + 2B(

α1
x1, x)K(x, y)

˜
W

(h−1)
n+1 (y, J)

)
.(C.4)
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We first consider the product of functions KBK in the second term: recalling that

B(
α1
x1,

β
x) = ∂x(∂x − 2

ψ′
β
(x)

ψβ(x)
)K(

α1
x1, x) and integrating by parts, we obtain

1

2πi

∮

CDx>y

dxK(
α0
x0, x)B(

α1
x1, x)K(x, y)

= − 1

2πi

∮

CDx>y

dxK ′
x(
α0
x0, x)K

′
x(
α1
x1, x)K(x, y)

+
1

2πi

∮

CDx>y

dxK ′
x(
α0
x0, x)K(

α1
x1, x)2

ψ′(x)

ψ(x)
K(x, y)

− 1

2πi

∮

CDx>y

dxK(
α0
x0, x)K

′
x(
α1
x1, x)K

′
x(x, y)

+
1

2πi

∮

CDx>y

dxK(
α0
x0, x)K(

α1
x1, x)2

ψ′(x)

ψ(x)
K ′
x(x, y). (C.5)

The first and the last terms in the right-hand side are already symmetric w.r.t. the

replacement x0 ↔ x1 and we disregard them. Integrating by parts in the third term in

the right-hand side we obtain one more symmetric term withK(
α0
x0, x)K(

α1
x1, x)K

′′
xx(x, y)

(which we can disregard as well) plus the term with K ′
x(
α0
x0, x)K(

α1
x1, x)K

′
x(x, y). Com-

bining the result with the second term, we obtain

1

2πi

∮

CDx>y

dxK ′
x(
α0
x0, x)K(

α1
x1, x)

(
∂x + 2

ψ′(x)

ψ(x)

)
K(x, y)

=
1

2πi

∮

CDx>y

dxK ′
x(
α0
x0, x)K(

α1
x1, x)

(
1

x− y
+
∑

β

hβ(x)Cβ(y)

)
, (C.6)

where the integrand is sector-independent w.r.t. the variable x, so only the residue at

x = y (with the minus sign) contributes in the second term in (C.4), which therefore

becomes

− 1

2πi

∮

CDy

dy 2K ′
y(
α0
x0, y)K(

α1
x1, y)

˜
W

(h−1)
n+1 (y, y, J). (C.7)

For the first term in (C.4), we use the induction assumption writing it in the form

1

2πi

∮

CDx>y

dx
1

2πi

∮

CDy

dy K(
α0
x0, x)K(

α1
x1, y)×

×
(
2B(x, y)2δh=1,n=2 + 4B(x, y)

˜
W

(h−1)
n+1 (x, y, J)′ +

˜
W

(h−2)
n+3 (x, x, y, y, J)′

)
,(C.8)

where the prime indicates that no propagators of B(x, y) type enter the expression,

and no singularity occurs in the corresponding terms upon interchanging the order of

contour integration w.r.t. x and y. The last term is again obviously symmetric w.r.t.

the replacement x0 ↔ x1.

The skew-symmetric part in the middle term is one-half of the residue coming from

the double-pole −1/(x − y)2 in the expression for B(x, y) (it comes again with the
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minus sign due to the choice of contour ordering), so we obtain

1

2πi

∮

CDy

dy 2K ′
y(
α0
x0, y)K(

α1
x1, y)

˜
W

(h−1)
n+1 (y, y, J)′ + symmetric term, (C.9)

which exactly cancel the term in (C.7) except the only case g = 1, n = 2 in which we

use that B(x, y) = −1/(x− y)2 +W
(0)

2 (x, y) as x→ y, so

2B(x, y)2 = 2(x− y)−4 − 4(x− y)−2W
(0)

2 (x, y) + regular,

the most singular first term results in the integrand K ′′′K that is sector-independent

and vanishes, whereas the second term produces

1

2πi

∮

CDy

dy 2K ′
y(
α0
x0, y)K(

α1
x1, y)W

(0)

2 (y, y) + symmetric term,

which kills the last remaining possible term in the expression (C.7). The theorem is

proved. �

D Appendix: Calculating ∂3F0

∂t30
in the Gaussian

case

In this appendix, we calculate the singular part of the third derivative of F0 and

integrate the answer to obtain the singular part of F0 itself. Although we explicitly

calculate only the Gaussian model case, we propose the answer for the general model

free energy singular part.

In the Gaussian model case with the potential V (x) = x2, we have four sectors of

solutions with the asymptotic directions ±∞, ±i∞. As the basic solutions we take

ψ+(x) and ψ−(x) that decrease at the corresponding imaginary infinities +i∞ and

−i∞. The real axis then plays the role of the Ã-cycle whereas the imaginary axis is

the B̃-cycle.
We are interested in evaluating the singular part of the third-order derivative ∂3F0

∂t30
.

Let us first find out about the origin of this singular behavior. Apparently, local

singularities at finite t0 appear when the solutions ψ+ and ψ− coincide, which happens

when ψ± := ψn = Hn(ix)e
x2/2~, where Hn are the Hermite polynomials, and

~2∂2xψn(x) = x2ψn(x) + (2n+ 1)~ψn(x).

From Corollary 6.1 we have

∂3F0

∂t30
=

1

(2πi)3

∮

B

∮

B

∮

B
dz1 dz2 dz3W

(0)
3 (z1, z2, z3), (D.1)
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and using that W
(0)
3 (

α1
z1,

α2
z2,

α3
z3) =

∮
CD dξK(

α1
z1, ξ)B(

α2
z2, ξ)B(

α3
z3, ξ) and that no singular-

ities appear when integrating over z2 and z3 we obtain that each integral gives, by

Theorem 4.8, just v0(
α

ξ) with α = ± and

v0(
±
ξ) = C0

1

ψ2
±(ξ)

∫ ξ

±i∞
ψ2
±(ρ)dρ (D.2)

with the normalization constant C0 such that

∫ +∞

−∞
[v0(

−
ξ)− v0(

+

ξ)] = 1.

Note that even in the case where ψ+ = ψ− the functions v0(
+

ξ) and v0(
−
ξ) differ because

of different lower limits of integrations, their difference is just C0
1

ψ2(ξ)

∫ +i∞
−i∞ ψ2(ρ)dρ,

and the normalization constant C0 at ψ+ = ψ− = ψn is

C0 =

(∫ +∞

−∞

1

ψ2
n(ξ)

dξ

)−1(∫ +i∞

−i∞
ψ2
n(ρ)dρ

)−1

. (D.3)

The remaining integral w.r.t. z1 in (D.1) develops singularity when ψ± → ψn because

the function K(
±
z1, ξ) develops a logarithmic cut on the B̃-cycle, and using the explicit

form (4.1) for the K-kernel (in this simplest case, K = K̂), we obtain

∂3F0

∂t30
=
∑

±

∫

C±
ξ

dξ
1

2πi

∫ ∓i∞

±i∞
dz

1

~

1

ψ2
±(z)

∫ z

±i∞
dρ
ψ2
±(ρ)

ρ− ξ
v20(

±
ξ), (D.4)

where the contour C±
ξ goes between ±∞ and ∓infty encircling the point ρ. The

singularity occurs when ρ (and, correspondingly, z) tends to −i∞ for ψ+ and to +i∞
for ψ−; this singular part comes from the residue at ξ = ρ, and we obtain that the

expression in (D.4) is

∑

±

∫ ∓i∞

0

dz
1

~

1

ψ2
±(z)

∫ z

0

dρψ2
±(ρ)v

2
0(

±
ρ) + regular

and using the explicit expressions (D.2) and (D.3) for v0, we obtain

sing.

(
∂3F0

∂t30

)

=
∑

±

∫ ∓i∞

0

dz
1

~

1

ψ2
±(z)

∫ z

0

dρ
1

ψ2
±(ρ)

[∫ ρ

±i∞
ψ2
±(s)ds

]2
C2

0 , (D.5)

where the singularity occurs at the upper integration limit for z and ρ when ψ+, ψ− →
ψn, and the term in the square brackets is nonsingular in this limit, so we can replace it

by its limiting value, which cancel exactly the corresponding term in the normalization

53



constant C0 (see (D.3); the integral w.r.t. z and ρ can be separated, and we obtain the

final expression

sing.

(
∂3F0

∂t30

)
=
∑

±

1

2~

[∫ ∓i∞

0

dz
1

ψ2
±(z)

]2 [∫ +∞

−∞

1

ψ2
±(x)

dx

]−2

. (D.6)

We now calculate t0 when ψ+, ψ− → ψn. Choosing ψ−(x) = ψ+(x)
∫ x
−∞

dξ
ψ2
+(ξ)

and

taking into account that the number of poles of solutions outside the Ã-cycle is n, we

have

t0 = −~n+ ~

∫ +∞

−∞

(
ψ′
−
ψ−

− ψ′
+

ψ+

)
= −~n + ~

∫ +∞

−∞

1

ψ+ψ−

= −~n+ ~

∫ +∞

−∞

dz

ψ2
+(z)

1∫ 0

−i∞
dξ

ψ2
+(ξ)

+
∫ z
0

dξ
ψ2
+(ξ)

. (D.7)

The first integral in the denominator diverges as ψ+ → ψn and denoting this integral

as Λ, we have

t0

∣∣∣
ψ+→ψn

= −~n + ~

∫ +∞
−∞

dz
ψ2
+(z)∫ 0

−i∞
dξ

ψ2
+(ξ)

+O(Λ−2). (D.8)

Comparing this expression with (D.6), we obtain

sing.

(
∂3F0

∂t30

)
=

1

~(n+ t0/~)2
, n ∈ Z+,0, (D.9)

that is, this derivative has double poles with the coefficient 1/~ at all points t0 = −~n,

n = 0, 1, . . .. A function that exhibits such a behavior is obviously Γ-function, so we

have that, up to an entire function,

sing.

(
∂3F0

∂t30

)
≃ 1

~
[log Γ]′′(t0/~), (D.10)

and, in turn,

sing.F0 ≃ ~2[
∫
log Γ](t0/~). (D.11)

Turning to the asymptotic behavior of
∫
log Γ(x) at large positive x we observe that

the leading term is 1
2
x2 log x, which is exactly what we might expect from the matrix-

model-like arguments: we must be able to apply semiclassical approximation at large

positive t0/~, and in this regime we have the leading asymptotic behavior of Gaussian

matrix model, i.e., sing.F0 ≃ 1
2
t20 log(t0) modulo polynomial terms (of order not higher

than two).

We may therefore put forward the following conjecture.

Conjecture D.1 The singular part of F0 for any potential Vd+1(x) has the form

~2
∑d

i=1
1
2
[
∫
log Γ](ǫ̃i/~) where ǫ̃i are the occupation numbers on the cycles Ãi.
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