34 research outputs found

    Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila

    Get PDF
    Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of beta-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4. C8 and 02) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a beta-strand connected by a short loop to an alpha-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as,a potential model organism for MADD. (C) 2012 Elsevier B.V. All rights reserved.Fundacao para a Ciencia e Tecnologia (FCT/MCTES, Portugal) [PTDC/SAU-GMG/70033/2006, PTDC/QUI-BIQ/113027/2009, PTDC/BIA-BCM/111822/2009, PTDC/SAU-BID/111796/2009, SFRH/BPD/41609/2007, SFRH/BPD/74475/2010, SFRH/BPD/34763/2007]; CLIMB UK; [PEst-OE/EQB/LA0004/2011]info:eu-repo/semantics/publishedVersio

    Carnitine-acylcarnitine translocase deficiency

    No full text

    Characterization of L-aminocarnitine, an inhibitor of fatty acid oxidation

    No full text
    The pathogenesis of hypoketotic hypoglycemia and cardiomyopathy in patients with fatty acid oxidation (FAO) disorders is still poorly understood. In vitro studies are hampered by the lack of natural mutants to asses the effect of FAO inhibition. In addition, only a few inhibitors of FAO are known. Furthermore, most inhibitors of FAO are activating ligands of peroxisome proliferator-activated receptors (PPARs). We show that l-aminocarnitine (L-AC), a carnitine analog, inhibits FAO efficiently, but does not activate PPAR. L-AC inhibits carnitine palmitoyltransferase (CPT) with different sensitivities towards CPT1 and CPT2, as well as carnitine acylcarnitine translocase (CACT). We further characterized L-AC using fibroblasts cell lines from controls and patients with different FAO defects. In these cell lines acylcarnitine profiles were determined in culture medium after loading with [U-(13)C]palmitic acid. In control fibroblasts, L-AC inhibits FAO leading to a reduction of C2-acylcarnitine and elevation of C16-acylcarnitine. In very long-chain acyl-CoA dehydrogenase (VLCAD)-deficient fibroblasts, L-AC decreased the elevated C14-acylcarnitine and increased C16-acylcarnitine. In CACT and CPT2-deficient cell lines, L-AC did not change the already elevated C16-acylcarnitine level, showing that CPT1 is not inhibited. Oxidation of pristanic acid was only partly inhibited at high L-AC concentrations, indicating minimal CACT inhibition. Therefore, we conclude that in intact cells L-AC inhibits CPT2. Combined with our observation that l-AC does not activate PPAR, we suggest that L-AC is useful to simulate a FAO defect in cells from different origi

    Successful Treatment of Hereditary Folate Malabsorption With Intramuscular Folinic Acid

    No full text
    Item does not contain fulltextBACKGROUND: Hereditary folate malabsorption is a multisystem disease owing to biallelic variants in the gene encoding the proton-coupled folate transporter. Hereditary folate malabsorption is treated with folinic acid, aimed to restore blood and cerebrospinal fluid folate levels. Little is known as to whether oral or intramuscular supplementation of folinic acid is most effective. METHODS: Here we describe a one-year-old boy with hereditary folate malabsorption presenting with the typical features including failure to thrive, aphthous stomatitis, macrocytic anemia along with severe developmental impairment and epilepsy, as well as a magnetic resonance imaging of the brain showing bilateral occipital, cortical calcifications characteristic of hereditary folate malabsorption. We compared the effect of treatment with oral folinic acid versus intramuscular folinic acid supplementation by measuring plasma and cerebrospinal fluid folate levels. RESULTS: Compared with oral administration, intramuscular treatment resulted in higher folate levels in blood and, most importantly, normalization of folate levels in cerebrospinal fluid. Clinically, nearly all systemic and neurological symptoms resolved. CONCLUSION: Normal cerebrospinal fluid folate levels can be achieved in individuals with hereditary folate malabsorption with intramuscular (but not with oral) administration of folinic acid.5 p

    Successful Treatment of Hereditary Folate Malabsorption With Intramuscular Folinic Acid

    No full text
    Background: Hereditary folate malabsorption is a multisystem disease owing to biallelic variants in the gene encoding the proton-coupled folate transporter. Hereditary folate malabsorption is treated with folinic acid, aimed to restore blood and cerebrospinal fluid folate levels. Little is known as to whether oral or intramuscular supplementation of folinic acid is most effective. Methods: Here we describe a one-year-old boy with hereditary folate malabsorption presenting with the typical features including failure to thrive, aphthous stomatitis, macrocytic anemia along with severe developmental impairment and epilepsy, as well as a magnetic resonance imaging of the brain showing bilateral occipital, cortical calcifications characteristic of hereditary folate malabsorption. We compared the effect of treatment with oral folinic acid versus intramuscular folinic acid supplementation by measuring plasma and cerebrospinal fluid folate levels. Results: Compared with oral administration, intramuscular treatment resulted in higher folate levels in blood and, most importantly, normalization of folate levels in cerebrospinal fluid. Clinically, nearly all systemic and neurological symptoms resolved. Conclusion: Normal cerebrospinal fluid folate levels can be achieved in individuals with hereditary folate malabsorption with intramuscular (but not with oral) administration of folinic acid
    corecore