48 research outputs found

    Hepatic abscess in a pre-existed simple hepatic cyst as a late complication of sigmoid colon ruptured diverticula: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hepatic abscesses have been reported as a rare complication of diverticulitis of the bowel. This complication is recognized more commonly at the time of the diagnosis of diverticulitis, or ruptured diverticula, but also can be diagnosed prior to surgery, or postoperatively.</p> <p>Case presentation</p> <p>This report describes a man who developed an hepatic abscess within a simple hepatic cyst, two months after operation for ruptured diverticula of the sigmoid colon. The abscess was drained surgically and the patient made a complete recovery.</p> <p>Conclusion</p> <p>The development of an hepatic abscess in a pre-existing hepatic cyst, secondary to diverticulitis, is a rare complication. A high degree of clinical suspicion is required for immediate diagnosis and treatment.</p

    Considerations on biologicals for patients with allergic disease in times of the COVID-19 pandemic: An EAACI statement

    Get PDF
    The outbreak of the SARS-CoV-2-induced coronavirus disease 2019 (COVID-19) pandemic re-shaped doctor-patient interaction and challenged capacities of healthcare systems. It created many issues around the optimal and safest way to treat complex patients with severe allergic disease. A significant number of the patients are on treatment with biologicals, and clinicians face the challenge to provide optimal care during the pandemic. Uncertainty of the potential risks for these patients is related to the fact that the exact sequence of immunological events during SARS-CoV-2 is not known. Severe COVID-19 patients may experience a “cytokine storm” and associated organ damage characterized by an exaggerated release of pro-inflammatory type 1 and type 3 cytokines. These inflammatory responses are potentially counteracted by anti-inflammatory cytokines and type 2 responses. This expert-based EAACI statement aims to provide guidance on the application of biologicals targeting type 2 inflammation in patients with allergic disease. Currently, there is very little evidence for an enhanced risk of patients with allergic diseases to develop severe COVID-19. Studies focusing on severe allergic phenotypes are lacking. At present, noninfected patients on biologicals for the treatment of asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyps, or chronic spontaneous urticaria should continue their biologicals targeting type 2 inflammation via self-application. In case of an active SARS-CoV-2 infection, biological treatment needs to be stopped until clinical recovery and SARS-CoV-2 negativity is established and treatment with biologicals should be re-initiated. Maintenance of add-on therapy and a constant assessment of disease control, apart from acute management, are demanded

    Surgical treatment of giant mesenteric fibromatosis presenting as a gastrointestinal stromal tumor: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Intra-abdominal fibromatosis, usually located at the mesenteric level, is a locally invasive tumor of fibrous origin, with no ability to metastasize, but a tendency to recur. Certain non-typical cases of intra-abdominal fibromatosis with involvement of the bowel wall can be misdiagnosed because of their different biological behavior.</p> <p>Case presentation</p> <p>We describe the case of a 64-year-old Caucasian man presenting with mesenteric fibromatosis and involvement of the bowel wall, who was treated surgically. The macroscopic and microscopic appearance of the lesion mimicked a gastrointestinal stromal tumor, a tumor with potential malignant behavior.</p> <p>Conclusion</p> <p>It is essential to make an early and correct diagnosis in such equivocal cases, so that the appropriate treatment can be chosen and suitable patients admitted to clinical trials if appropriate. New and reliable criteria for discriminating between intra-abdominal fibromatosis and gastrointestinal stromal tumor should be proposed and established because novel sophisticated therapeutic strategies have been introduced in the international literature.</p

    On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode

    Get PDF
    Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors

    COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals:EAACI recommendations

    Get PDF
    Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals

    Functionalization of gold screen printed electrodes with bacterial photosynthetic reaction centers by laser printing technology for mediatorless herbicide biosensing

    No full text
    The development of an amperometric biosensor for herbicide detection, using bacterial reaction centers (RC) as biorecognition element, is presented. RC immobilization on gold screen printed electrodes was achieved by LIFT, a powerful physisorption-based immobilization technique that enhances the intimate contact between the protein and the electrode surface. As a result, stable photocurrents driven by direct electron transfer at the donor side were observed, both in the presence and in the absence of a quinone substrate in solution. The addition of quinone UQ(0) increased the photocurrents, while the UQ(0)-free system showed higher sensitivity to the herbicide terbutryn, a model inhibitor, acting as photocurrent attenuator. In spite of its simple design, the performances achieved by our mediatorless device are comparable or superior to those reported for analogous RC-based photoelectrochemical cells, in terms of both terbutryn sensing and photocurrent generation

    Modification of Gold Electrodes with Bacterial Reaction Centres Immobilized by Laser Induced Forward Transfer (LIFT) Technique for Amperometric Herbicide Detection

    No full text
    Abstract The functionalization of screen-printed electrodes (SPEs) with a thin film of reaction centre (RC) proteins from the phototrophic bacterium Rhodobacter (R.) sphaeroides, by means of laser induced forward transfer (LIFT) technique, allowed the fabrication of robust and sensitive bio-hybrid devices for terbutryn detection and analysis. The optimal wiring between RCs and the gold electrode surface, achieved by LIFT, led to the generation of cathodic photocurrents sustained by a direct electron transfer (DET) mechanism, which were attenuated by addition of the herbicide inhibitor. (C) 2016 The Authors. Published by Elsevier Ltd
    corecore