996 research outputs found

    V. Woolf et H. Hesse, critiques et romanciers face aux clefs psychanalytiques

    Get PDF
    Actes du XXXVIIIe Congrès de la SFLGC, Université de Tours, 2012International audienc

    Towards Mixed Gr{\"o}bner Basis Algorithms: the Multihomogeneous and Sparse Case

    Get PDF
    One of the biggest open problems in computational algebra is the design of efficient algorithms for Gr{\"o}bner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faug{\`e}re, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gr{\"o}bner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations

    320g Ionization-Heat Cryogenic Detector for Dark Matter Search in the EDELWEISS Experiment

    Full text link
    The EDELWEISS experiment used in 2001 a 320g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane for direct WIMP detection. This detector presents an increase of more than 4 times the mass of previous detectors. Calibrations of this detector are used to determine its energy resolution and fiducial volume, and to optimize the detector design for the 1kg phase of the EDELWEISS-I experiment. Analysis of the calibrations and characteristics of a first series of 320g-detectors are presented.Comment: 4 pages, 3 figure

    Regularity of prime ideals

    Get PDF
    We answer several natural questions which arise from a recent paper of McCullough and Peeva providing counterexamples to the Eisenbud\u2013Goto Regularity Conjecture. We give counterexamples using Rees algebras, and also construct counterexamples that do not rely on the Mayr\u2013Meyer construction. Furthermore, examples of prime ideals for which the difference between the maximal degree of a minimal generator and the maximal degree of a minimal first syzygy can be made arbitrarily large are given. Using a result of Ananyan-Hochster we show that there exists an upper bound on regularity of prime ideals in terms of the multiplicity alone

    CPT symmetry and antimatter gravity in general relativity

    Full text link
    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (5×1015M\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Do we live in the universe successively dominated by matter and antimatter?

    Full text link
    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of matter into antimatter may look as a Big Bang. Our mechanism prevents a singularity; a new cycle might start with an initial size more than 30 orders of magnitude greater than the Planck length, suggesting that there is no need for inflationary scenario in Cosmology. In addition, there is no need to invoke CP violation for explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous universe was dominated by antimatter

    Syncretism or correlation: Teilhard and Tillich's contrasting methodological approaches to science and theology

    Get PDF
    This is the pre-peer reviewed version of the article, published in Zygon 40(3) pp.739-750, which has been published in final form at http://www3.interscience.wiley.com/journal/118699350/issueThis paper revisits Paul Tillich’s theological methodology, and contrasts his practice of correlation with the syncretistic methodological practices of Teilhard de Chardin. I argue that the method of correlation, as referred to in Robert John Russell’s 2001 Zygon article, fails to uphold Tillich’s self-limitation of his own methodology with regard to Tillich’s insistence upon the theological circle. I assert that the theological circle, as taken from Systematic Theology I, is a central facet within Tillich’s methodology and that this often ignored concept needs to be resuscitated if one is to remain authentically Tillichian in one’s approach to the science and theology dialogue
    corecore