REGULARITY OF PRIME IDEALS
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AND MATTEO VARBARO

ABSTRACT. We answer several natural questions which arise from the re-
cent paper [MP] of McCullough and Peeva providing counterexamples to
the Eisenbud-Goto Regularity Conjecture. We give counterexamples using
Rees algebras, and also construct counterexamples that do not rely on the
Mayr-Meyer construction. Furthermore, examples of prime ideals for which
the difference between the maximal degree of a minimal generator and the
maximal degree of a minimal first syzygy can be made arbitrarily large are
given. Using a result of Ananyan-Hochster we show that there exists an
upper bound on regularity of prime ideals in terms of the multiplicity alone.

1. Introduction

Regularity is a numerical invariant that measures the complexity of the struc-
ture of homogeneous ideals in a polynomial ring. It has been studied in Al-
gebraic Geometry and Commutative Algebra; see the expository paper [Chl.
We consider a standard graded polynomial ring U = k[z, ..., z,] over a field
k, where all variables have degree one. Let L be a homogeneous ideal in the
ring U, and let 3;;(L) = dimy, Tor? (L, k); be its graded Betti numbers. The

(Castelnuovo-Mumford) regularity of L is
veg(L) = max {j | B10;(L) # 0} .

Alternatively, regularity can be defined using local cohomology. Papers of
Bayer-Mumford, Bayer-Stillman, and Koh, give examples of families of ideals
attaining doubly exponential regularity. In contrast, Bertram-Ein-Lazarsfeld,
Chardin-Ulrich, and Mumford have proved that there are nice bounds on the
regularity of the ideals of smooth (or nearly smooth) projective varieties; see
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the expository paper [Ch2]. As discussed in the influential paper [BM] by
Bayer and Mumford (1993), the biggest missing link between the general case
and the smooth case is to obtain a decent bound on the regularity of all prime
ideals (the ideals that define irreducible projective varieties). The long stand-
ing Eisenbud-Goto Regularity Conjecture predicts an elegant linear bound, in
terms of the degree of the variety:

The Regularity Conjecture 1.1. (Eisenbud-Goto [EG], 1984) Suppose that

the field k is algebraically closed. If L C (z,. .. ,zp)2 18 a homogeneous prime
tdeal in U, then
(1.1) reg(L) < deg(U/L)— codim(L)+ 1,

where deg(U/L) is the multiplicity of U/L (also called the degree of U/L, or
the degree of X = Proj(U/L)), and codim(L) is the codimension (also called
height) of L.

The conjecture is proved for curves by Gruson-Lazarsfeld-Peskine, for
smooth surfaces by Lazarsfeld and Pinkham, for most smooth 3-folds by
Ran and Kwak, if U/L is Cohen-Macaulay by Eisenbud-Goto, and in many
other special cases.

Recently, McCullough and Peeva [MP] introduced two new techniques and
used them to provide many counterexamples to the Eisenbud-Goto Regularity
Conjecture. In this note we answer some natural questions which arise from
the paper [MP].

The counterexamples in [MP] come from Rees-like algebras, which were
introduced in [MP| Section 3]. Rees-like algebras, unlike the usual Rees al-
gebras, have well-structured defining equations and minimal free resolutions.
The properties of Rees algebras are of high interest and can be quite intricate
(see for example [Hu], [KPU]). Several mathematicians have asked us if the
defining ideals of Rees algebras contain counterexamples as well or whether
the Regularity Conjecture holds for them. In Sections |3 and [4] we provide
counterexamples using Rees algebras. In the latter section we study standard
graded Rees algebras that arise as Rees algebras of ideals generated in one
degree.

The main theorem in [MP] shows that the regularity of prime ideals is
not bounded by any polynomial function of the multiplicity. It is natural to
ask if there exists a bound on regularity in terms of the multiplicity alone.
Such a bound does not exist for primary ideals (Example . However,
we prove in Section [5| that the recent work of Ananyan-Hochster [AH] (who
solved Stillman’s Conjecture) implies the existence of the desired bound for

prime ideals.
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In the counterexamples in [MP] the multiplicity is smaller than the maxi-
mal degree of a minimal generator of a prime ideal. One may wonder whether
there are prime ideals for which the difference between the maximal degree
of a minimal generator and the maximal degree of a minimal (first) syzygy
can be made arbitrarily large. In Section [6] we show that such prime ideals
exist. We obtain them by starting with Ullery’s designer ideals (which are not
prime) [Ul] and applying to them the method by McCullough-Peeva in order
to get prime ideals.

In Section [7] we construct a family of three-generated ideals whose regu-
larity grows faster than the product of the degrees of the generators. To our
knowledge, this is the only known such family other than those based on the
Mayr-Meyer construction. Applying the construction in [MP] we use this fam-
ily to construct an infinite family of counterexamples to the Eisenbud-Goto
Regularity Conjecture that do not rely on the Mayr-Meyer construction.

2. Multiplicity of prime ideals

Throughout this section, we consider a polynomial ring W' = kfwy, ..., w,)]
over an arbitrary field & and positively graded with deg(w;) € N for every i.
Suppose ¢; = deg(w;) > 1 for i < ¢ and deg(w;) = 1 for ¢ > ¢ (for some
q < p).

A function @ : Z — Q is a quasipolynomial (over Q) of degree r if

Q(n) = a,(n)n” + a,_1(n)n

where a; : Z — Q is a periodic function for each i = 0,...,r and a, # 0. A
natural number v is called a period of @ if

g (n)n+ ag(n),

a;(n+v) =a;(n) for all n € Z and for all i = 0,...,7.

Let M be a homogeneous ideal in the polynomial ring W. The Hilbert
function hyyny + Zsg — Zsg of W/M is hyypr(n) = dimy, (W/M),,. Tt is often
studied via the Hilbert series

Hilbyy (1) = > u"dimy (W/M), .
n>0
By a theorem of Hilbert-Serre, there is a quasipolynomial Q(n) of degree
dim(W/M) — 1 and period lem(cy, ..., c,) such that
hwn(n) = Q(n) for n > 0.

For a proof, see for example [BI].

Set d := ged(cy, ..., ¢,), and observe that Q(dj +t) =0 for 0 <t < d.
3



Proposition 2.1. If M is a prime ideal, then a,.(dj) is a constant (independent
of the parameter j), which we denote a,..

Proof. We may easily reduce to the case d = 1 by dividing the degrees of the
variables by their greatest common divisor.

Assume the opposite. Set a(n) = a,(n). Let m and m + s be two different
integers for which the Hilbert function agrees with the quasipolynomial () and
such that a(m) > a(m + s). Since ged(cy,...,c,) = 1, there exist ¢; € Z
such that s = > 1 ¢;¢c;. Hence, m+ s =m+ >_1 {;c;. Adding a large positive
multiple of b := lem(cy, ..., ¢,) to the righthand-side, we get

q q
a(m+s) = a(m~|— Z lic; —HJb) = a(m+ Z f;ci)
=1 i=1

where each ¢; is positive. Foir each i, as w; is a non-zerodivisor, we have an
inclusion w;(W/M); € (W/M);,.. and thus dimy (W/M); < dim, (W/M)
for every 5 > 0. Hence,

a(m+ s) = a(m + i egci) > a(m),

i=1

Jte

which is a contradiction. U
If M is a prime ideal in W, then we call
emin(M) = rla,
the Hilbert multiplicity of S/M or of M, and also denote it by deg(M) or
e (W/M).
On the other hand, recall the construction of the Euler polynomial:

Notation 2.2. Fix a finite graded complex V of finitely generated W-free
modules and with V; = 0 for ¢ < 0. We may write V;, = ijeZW(—j)b“. The
Fuler polynomial of V is

Let N be a graded finitely generated W-module, and let V be a finite graded
free resolution of N. Since every graded free resolution of NV is isomorphic to
the direct sum of the minimal graded free resolution and a trivial complex,
it follows that the Euler polynomial does not depend on the choice of the
resolution, so we call it the Fuler polynomial of N. We factor out a maximal
possible power of 1 — u and write

Ey=(1 —4U)chv(U) ,



where hvy (1) # 0.

We set N = W/M and in the notation above, we call

6Euler(]\4) = hV<1)
the Fuler multiplicity of S/M or of M, and also denote it by e Euler(W/M ).
A prime ideal M is called non-degenerate if M C (wy, ... ,wp) )

Theorem 2.3. If M is a non-degenerate homogeneous prime ideal in W, then

eEuler( - €H11b H deg

The proof uses the technique of step-by-step homogenization introduced
in [MP]. Theorem is an immediate corollary of Theorem .

The following result from [MP] describes the step-by-step homogenization
technique:

Step-by-step Homogenization Theorem 2.4. [MP| Let M be a homoge-
neous non-degenerate prime ideal, and let IC be a minimal set of homogeneous
generators of M. Consider the homogenous map (of degree 0)

v W =klwy,...,w,) — W =kw,...,w,v,...,0,
w|—>wvdegW( 1f0r1§i§q,
where vy, ..., v, are new variables and W' is standard graded. The ideal M' C
W' generated by the elements of v(K) is a homogeneous non-degenerate prime

ideal in W'. Furthermore, the graded Betti numbers of W'/M' over W' are
the same as those of W/M over W.

We say that M’ is obtained from M by step-by-step homogenization or by
relabeling. The relation between the multiplicities of M and M’ is given in the
next result:

Theorem 2.5. In the notation and under the assumptions of Theorem[2.4] we
have

eEuler(M,) = eHilb(M,)
6Euler(‘]\4/) = 6Euler(]w)

exin (M) = epn (M H deg(w

Proof. The first equality holds because M’ is a homogeneous ideal in a standard

graded ring. The second equality holds because step-by-step homogenization
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preserves the graded Betti numbers by Theorem [2.4. We will prove the third
equality.

We have the same Euler polynomial E(u) := Eyy = Eyy by Theorem [2.4]
We get the Hilbert series

Hllbw/M(u) = — o (10,
(1 - U)P q ;1:1 (1 ud g ( 7,))
Hilby ) (u) = 1= u)¥i-
Therefore,
' ;1:1 (1 _ udeg(wi) .
Hilbyy (1) = T Hilbyyas (w)
;1: 1 +u+---+ udeg(wi)fl )

Note that the factor in front of Hilby, /s, (u) is a series with positive coefficients.
Apply Lemma [2.6] U

If S/M has Hilbert multiplicity a, we say that its Hilbert series has it too.

Lemma 2.6. Let h be a Hilbert function given by a quasipolynomial Q(n) of
degree r and with constant leading coefficient a := rla,. Let g be the Hilbert
series of h.

(1) The Hilbert multiplicity of the Hilbert series | J

1s the same.

(2) The Hilbert multiplicity of the Hilbert series (1+u+- - -—|—ub)g is (b+1)a.

Proof. We have g =3 -, Q(n)u".
(1) Since

(I+u+u’+-)g=> u(QO)+Q(1)+--+Q(n))
n>0
the quasipolynomial for the considered Hilbert series is
Q)+ +Q(0) =a,(n"+(n—1)"+---+1)
+a,_4 (rf_1 +(n—1""4 4+ 1)

= dr + terms of lower degree.
r+1
Thus the Hilbert multiplicity is (r + 1)!;25 = rla,.
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(2) Since
L+ut-+u)g=> u"(Qn)+ - +Q(n—"))

the quasipolynomial for the considered Hilbert series is
Qn)+---+Qn—>b)=a,(n"+(n—-1)"+--+(n-0b)")
+ ar_l(nr—l + (77, . 1)7“—1 T (n . b)r—l)
= a,(b+ 1)n" + terms of lower degree.

3. Multiplicities of Rees algebras and Rees-like algebras

In this section we provide counterexamples to the Eisenbud-Goto Regularity
Conjecture [EG| using Rees algebras.

Notation 3.1. We follow the notation in [MP]. Consider the polynomial ring

S =klxy,...,,)
over a field k with a standard grading defined by deg(x;) = 1 for every i. Let
I be a homogeneous ideal minimally generated by forms fi,..., f,, of degrees
ay,...,a,,, where m > 2.

Theorem 3.2. Consider the Rees algebra S[It] and the Rees-like algebra
S[It,t*]. We have:

exin (S[It]) < emp(S[It,£7]) = 1
1 m
eEuler<S[[t]) S §€Euler It t 211 deg fz

Denote by Q and L the defining ideals of S[It,t*] and S[It] respectively. Then
1
deg ' < §deg Q',

where L' and Q' (Q' is denoted by P in [MP]) are the respective step-by-step
homogenizations of L and Q).

Proof. Note that

dim (S[t]) = dim (S[It]) = dim (S[It,#*]) =n + 1
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since they are domains of the same transcendence degree. Since S[[t] C
S[It,#’] € S[t] we conclude

0 < e (S[1]) < em (S, %)) < emy(S[E]) = 1.

The first and second equalities below come from Theorem [2.3}

eputer (S[11]) = exn (S[11]) H deg(y;) < eHilb(S[[t7t2]> H deg(y;)

i=1 i=1

1 1 i
= §eEuler(S[It7t2]) eEuler g deg fz + 1 .

The factor % comes from the variable z which has degree 2. The last equality
holds by [MP} Theorem 1.6(2)], and the equality before holds by Theorem [2.5]
The inequality deg L' < 1deg Q' now follows from Theorem . U

For a graded ideal N (in a positively graded polynomial ring), we denote
by maxdeg(/N) the maximal degree of an element in a minimal system of
homogeneous generators of V.

Theorem 3.3. For r € N we consider the step-by-step homogenization L. of
the defining ideal L, of the Rees algebra S[I,t], where I, is the Koh ideal used
in Counterexample 1.8(1) in [MP]. Then multiplicity and mazdeg of the prime
ideal L. satisfy

deg L < 2 x 3%r=3
r—1

maxdeg L. > 2%  +1.

Thus it is a counterezample to the Regularity Conjecture (see [MPL 1.2]) for
r > 10.

Proof. Note that L, contains all the y-linear minimal generators listed in [MP]
(3.4)]. They are minimal generators of L, by [MP] Proposition 2.9] and since
L, cannot contain any elements in which no v, ..., y,, appears.

Let P, be the prime ideal used in Counterexample 1.8(1) in [MP]. Then

1
deg L, < Edeg P. <2 x 33

by Theorem 3.2/ and [MP), Counterexample 1.8(1)]. O

Similarly, Counterexample 1.8(2) in [MP] leads to Rees-algebra counterex-

amples to the Regularity Conjecture.
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4. Standard graded Rees Algebras

In this section, we provide a different view than Theorem on using Rees
Algebras to produce examples of large regularity. We focus on standard graded
Rees Algebras, which arise as the Rees algebras of ideals generated in one
degree.

First, we observe how to reduce to the case of ideals generated in one
degree:

Construction 4.1. We follow the notation in [MP]. Consider the standard
graded polynomial ring S = k[zq,...,z,] over a field k. Let I be a homo-
geneous ideal minimally generated by forms fi,..., f,, of degrees a4,...,a,,,
where m > 2. Set d = max;{a;}. Consider a new ideal I generated by the
forms {z7% f,} of degree d in the polynomial ring S = S[z]. We bigrade S
by deg(z;) = (1,1) for every i and deg(z) = (0,1). The ideal I is bigraded,
and therefore S / I has a bigraded minimal free resolution U over S. The reg-
ularity 7 of S / I (assuming standard grading) is equal to the regularity of U
with respect to the second coordinate of the bigrading. It follows that it is
bigger than the regularity " of U with respect to the first coordinate of the
bigrading since deg(x) = (0,1). Observe that z — 1 is a non-zerodivisor (for
degree reasons using the second coordinate of the bigrading) on S / I. There-
fore, U® S/(x — 1) is a graded (posibly non-minimal) free resolution of S/I
over S. Hence, the regularity r of S/I is smaller than r’. We showed that

regg(I) < regg(S/1).

In fact, we have such an inequality in every homological degree, that is,
maxdeg(Syz? (S/I)) < maxdeg(Syz® (S/1)),

where maxdeg (V) stands for the maximal degree in a system of minimal ho-
mogeneous generators of a graded finitely generated module N.

Now, we consider the Rees Algebra R := S[It] as a standard graded ring.
Its prime graded (with respect to the standard grading) defining ideal T" sat-
isfies

maxdeg(T") > maxdeg(Syzf(f)) — (d — 1) > maxdeg(Syz; (I)) — (d — 1) .

Example 4.2. We will apply Construction to Koh’s examples based on
the Mayr-Meyer [MM] construction. For r > 1, Koh constructed in [Ko] an
ideal I, generated by 22r — 3 quadrics and one linear form in a polynomial
ring with 22r — 1 variables, and such that maxdeg(Syz,(I,)) > 22" The

construction above produces an ideal INT generated by 22r — 2 quadrics in a
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r—1

polynomial ring with 22r variables, and such that maxdeg(T,) > 2> —1. On
the other hand, by Theorem

deg(Tr) < 2min{22r—2, 22r} 1 = 222r—2 _1.
Thus, deg(7},) < maxdeg(7,) for r > 10.
Now, we turn to Rees Algebras.

Theorem 4.3. Let M be an ideal generated by m > 1 forms of the same
degree d > 2 in R = k[X,,...,X,], and Ry; = R[Mt] be the Rees Algebra of
M which is considered as a standard graded quotient of the polynomial ring
R[Yy,...,Y,,]. Then,

min{m,n} 1
d—1 ’
and equality holds if further M is (X,..., X, )-primary or its m generators
form a reqular sequence.

deg<RM) <

Proof. Call g,,...,g,, the given m generators of M.

First give bidegree (1,0) to the X;’s and bidegree (0, 1) to the Y;’s.

Notice that each bigraded component (R)),; for this bigrading has at
most a vector space dimension equal to the one of the Rees algebra associated
to generic forms (ones with indeterminate coefficients). Indeed, this dimension
can be computed as the rank of a Sylvester matrix associated to the collection
of elements g; -- " 9i, with i; < -+ <4, in the degree p + jd.

This inequality in turn shows that the Hilbert function of R, is bounded
above by the one given by generic forms (over the extension of k generated by
the coefficients).

If m < n the generic forms are providing a regular sequence. And any
complete intersection has its Rees algebra resolved by the Eagon-Northcott
complex of the (2 x m)-matrix with maximal minors Y,g, — Y,.g,.

Let Hilbg, (u) be the Hilbert series of R;. Whenever m < n this shows
the (term by term) inequality :

(1 . ud)m—l + Ud( 2262(1 _ ud)l(l . u)m—i—1>
(1 —u)™*" '

As M # 0, the dimension of the Rees algebra of M is the same as the one of
a complete intersection and hence the inequality above shows that the degree
of R, is bounded above by the one corresponding to a complete intersection,
whose value is d™ ' +d™ 2+ - -4+d+1 by the above formula for the complete
intersection case.

Hilby, (u) <
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Notice further that any graded ideal generated in degree d is a subideal of
J = (X,,...,X,)"% Tt follows that the Hilbert series of R, is bounded above
by the one of R;. Again, recall that R;; and R; have same dimension, hence

d" —1
d—1"

We computed the multiplicity in the complete intersection case, and if
M is (Xy,...,X,)-primary it contains an ideal M’ generated by a regular
sequence of forms of degree d. The degree of R, is hence bounded below by

the degree of R, and above by the one R; these are both equal to % and
the conclusion follows. O

deg(Ryr) < deg(R;) =

5. Regularity is bounded in terms of multiplicity

In this section we show that an upper bound on regularity of non-degenerate
prime ideals in terms of the multiplicity alone follows from the recent work of
Ananyan and Hochster [AH|, who solved Stillman’s Conjecture. From now on,
the polynomial rings occurring in the paper are standard graded.

Lemma 5.1. Let L, and Ly be two homogeneous ideals of U = k[ X1, ..., Xy]
whose number and degrees of generators are bounded by a constant c. Then the
number and the degrees of the generators of Ly N Ly are bounded by a constant
depending only on c.

Proof. Looking at the exact sequence

U u U U
— —

we infer the following inequality for any j € Z:
U U U
dimy, Tory ( ———, k| < dim, Tor§ | —,k dimy, Torg | —, &
1my, lorg (L1 ﬂLz’ )j < aimy lorg (Ll, )j + dimy lorg, (L2, )j

U
+ dim; Tor{ (| ——— k| .
e (Ll + Ly )j

By [AH, Theorem D (a)] the regularity and the graded Betti numbers of Lli I
are bounded by a constant depending only on ¢, so we get the desired property.

O

Theorem 5.2. Let e and h be positive integers and k be a field. There ex-
1st constants, depending only on e and h, bounding respectively the projective

dimension, reqularity, and the graded Betti numbers of every homogeneous
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unmized radical ideal of multiplicity e and height h in a standard graded poly-
nomial ring over k.

Proof. We may assume e > 2. Let L be a homogeneous unmixed radical ideal
of U = k[X,,..., Xy] of multiplicity e and height h.

First, we will show that the ideal L contains a regular sequence gy, ..., g,
of forms of degrees less than or equal to e. Choose a Noether normalization
k[X,,...,X,] (this may need a finite extension of the base field to change
coordinates if |k| < e, but this extension keeps L unmixed and radical and
does not affect the invariants we are bounding). Then the generators of L N
kX1, ..., X4 Xgpi] = (g;) for i = 1,...h form a regular sequence of forms of
degrees at most e.

Let b := (gy,...,9,) and

h
m = Z(deggi — 1) =reg(U/b).
i=1
If L = b the assertion is clear, so suppose L # b. If p, is a minimal prime of
b, then there exists a form f; of degree m such that p, = b : (f;) (by [Ch3,
4.1] or [CU, 1.2], for instance). Hence, if L = Ni_;p;, then L = b : (f) with
f:=>"¢, fi- The exact sequence

0—U/L(—m) —U/b—U/(b+(f)) — 0

then shows that reg(U/L) = reg(U/(b + (f))) —m + 1. Hence the regularity
of L is bounded by the one of an ideal generated in degrees (e, ..., e, m) such
that e is repeated h times, and m < h(e — 1).

By [AH, Theorem D (a)] it follows that the projective dimension, regular-
ity, and Betti numbers of L are bounded as well by constants depending only
on e and h. 0

Corollary 5.3. Let e be a positive integer and k be an algebraically closed
field. There exist constants, depending only on e, bounding the projective
dimension, reqularity and graded Betti numbers of every homogeneous non-
degenerate prime ideal in a polynomial ring over k of multiplicity e.

Proof. The claim follows immediately by Theorem since the height of a
homogeneous non-degenerate prime ideal in a polynomial ring over an alge-
braically closed field is less than its multiplicity. U

This corollary also holds for reduced, equidimensionnal ideals that are
connected in codimension 1 (or connected in codimension r, for any given r >
1). Also the conclusion concerning the regularity holds without the condition

of being non-degenerate.
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Examples 5.4. We give three examples. They show that Corollary[5.3| cannot
be generalized to radical ideals, nor to primary ideals.

(1) Fix n € N and let
M= (x,...;2,) N (Y1, y,) CU=klz;,y;|i=1,...,n].
Then M is a non-degenerate unmixed radical ideal of multiplicity 2, but
projdimU/M =2n — 1.
(2) Fix n € N and let
M = (2%, xy, 3°, za” +yb") C U = k[z,y,a,b].

It follows from |[Enl Lemma 10] that

(i) M is a non-degenerate ideal of regularity equal to n + 1;
(i) e(U/M) = 2
(iii) M is (x,y)-primary.

(3) Fix n,e € N with e > 3. By [HMMS| Theorem 1.2] there exists an
ideal M in a polynomial ring U over k such that:

(i) M is a non-degenerate ideal of projective dimension at least n;
(i) e(U/M) = e;
(iii) M is (x,y)-primary, where x and y are independent linear forms.

These examples still leave open the question whether there exists a bound
on the regularity of unmixed radical ideals (over an algebraically closed field)
in terms of the multiplicity alone.

Remarks 5.5. We provide three upper bounds on regularity. Use the notation
in the introduction.

(1) According to a lemma which Mumford attributes to Castelnuovo [Mul
Lemma, p.101] and a lemma which appears in his joint work with Bayer [BM],
one has for any graded ideal L a procedure to estimate the regularity of U/L
by induction on the dimension.

If k is infinite (one can reduce to this case), choose a general linear form ¢
and set r := reg(U/L + (£)) and 7" := reg(U/(L + (1))**). Then

).

(i) reg(U/L) < r + dimy,(H(U/L),) if dim(U/L) > 1,

with Hy(U/L), = (L*"/L), C (U/L),.

(i) reg(U/L*™) <+’ 4 dimy,(Hu(U/L).,), if dim(U/L) > 2,
with dimy, Ha(U/L),» = dim, H*(X, Ox (r")) — dim,,(U/L*"),
where X := proj(U/L).
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Estimates are precise and easy to get whenever dim(U/L) < 1. Item (i) gives
an estimate of the form (Qd)("fl)! for the regularity of an ideal generated in de-
grees at most d in a polynomial ring in n variables. Introducing (implicitely) an
invariant measuring both the regularity and the defect of saturation, Caviglia-
Sbarra [CS] proved a refinement of this estimate, reducing the exponent of 2d
to 2"~ or close to 24mU/L),

To use (ii), one notices that whenever X is reduced, then proj(U/L+({)) is
reduced as well, and if the X,’s for i = 1, ..., s are the irreducible components
of X, then

dim;, H(X, Ox () <) dim H(X, Ox, (1))
and

) @~ dim X
dim, H°(X, 0 < X;
'Y, O () < (0 el
for p > 0.
This last estimate is valid for any symbolic power of a prime ideal (i.e.,
for the unmixed part of the scheme defined by a power of a prime ideal). If L
is a homogeneous radical ideal or, more generally, an intersection of symbolic

powers of prime ideals and e is the sum of their multiplicities, it implies

reg(L) S (6 + 1)(dim(U/L))!‘

The existence of a bound in these terms traces back to work of Kleiman (see
Rossi-Valla-Trung [?, Section 3]).

(2) Tt follows from results of Lazarsfeld that, in characteristic zero, if an
homogeneous equidimensionnal ideal L of height h is defined in degree at most
d, then there exists another ideal I with same radical such that L and I coincide
locally at primes p such that (U/L), is regular and reg(U/I) < h(d — 1).
See Chardin-D’Cruz [CD] for a more precise statement. As a consequence
reg(U/L*™) < h(d — 1) if the projective scheme defined by L has at most
isolated singularities.

(3) Assume X C P" is reduced and equidimensionnal of dimension d over
an algebraically closed field and c¢; is the number of connected components
of scheme X (j) := XNH;N---NH; for j =0,---,d:= dimX and general
hyperplanes H;. Then ¢y < ¢; < --+ < ¢g = deg(X) and X (d) is not contained
in any linear space of dimension < n — ¢ with o := Z;l;é ¢;. Thus deg(X) >
n—o. Also ¢;_; is bounded above by the number s of irreducible components
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of X. If X is the union of irreducible components X;, we thus have

Zdeg(Xi) + i(cj —1) > codim(X)

It follows that if X is connected in codimension r, then

codim(X) < deg(X)+ (r—1)(s—1) <rdeg(X) —r+ 1.

6. Prime ideals from designer ideals

In this section, we apply the method in [MP] to the designer ideals constructed
by Ullery in [Ul].

First we define notation related to maximal shifts. Let T' = k[z4,...,z,]
and let M be a finitely generated T-module. Set

t; (M) = max{j | Tor; (M, k); # 0} = max{j| £5(M) # 0}.

Thus t; (M) is the maximal degree of an element in a minimal generating set
of M and tf(M ) is the maximal degree of a minimal first syzygy of M. The
mazximal shifts t] (M) are related to regularity by

reg(M) = max o {t;f(]\/[) —i}.

0<i<projdim

We state a version of a result of Ullery:

Theorem 6.1 ([Ul, Theorem 1.3]). Let T' = k[xy,...,x,] and let M be a
finitely generated T-module generated in a single non-negative degree with
strictly increasing sequence of maximal graded shifts (tOT(M), t1 (M), ... ,tf(M))
Set a = toT(M) and fix a positive integer N such that the number of elements
m a minimal homogeneous generating set of M is < (Ntffl). Then there

exists an ideal Jy in S =Ty, ...,yn] such that

$5(1,) = th (M) if0<i<r—1
LM tT(M)+i—r+1 ifr<i<N+r—1

In particular, if we pick M to be generated in degree a = 1, and N suffi-
ciently large, then there exists an ideal J,; generated by homogeneous quadrics
with any strictly increasing sequence as an initial sequence of its maximal
graded shifts.

We now take the step-by-step homogenization of the defining prime ideal
of the Rees-like algebra of J,; to produce prime ideals over any field with

generators in degree at most 6 and arbitrarily large degree of first syzygies:
15



Theorem 6.2. Fiz a positive integer s > 9 and field k. There exists a non-
degenerate prime ideal P in a polynomial ring R over k with té%(P) =6 and
tH(P) = s.

Proof. Take T = k[vy, 9, 73] and M = Ext$(T/ (1,9, 23)° ", ) (4—s) (where
(4 —s) denotes a shift of degrees). Then M is a Cohen-Macaulay module with
Betti table of the form:

2 3
1:] % % % -
2.0 - - - -
3il- - - -
s-4:| - - - x
where “x” denotes a non-zero entry and “-” denotes a zero entry. Thus,

to (M) =1, tj (M) =2, t5(M) =3, t{(M)=s—1.
By Theorem there is an ideal J in a larger polynomial ring S with
to(J) =2, t/(J) =3, t5(J) =5~ 1

and t;g(J) =s+1—3for 3 <i<projdimJ.

Now let P be the step-by-step homogenization of the defining prime ideal
of the Rees-like algebra of J in a larger polynomial ring R, as constructed in
[MP]. By [MP], Theorem 1.6],

tH(P) = max{2(tOS(J) +1), t7(J) + 1} = max{6,4} = 6.

The structure of the minimal free resolution of P in [MP], Theorem 3.10] implies

that

t1(P) = max {B(tOS(J) F 1), 85 () + 5 () + 2, 65 () + 1} = max{9,7,s} = s.
O

7. Ideals with Large Regularity

In this section we provide an infinite family of counterexamples to the Eisenbud-
Goto Regularity Conjecture that do not rely on the Mayr-Meyer construction.

Proposition 7.1. Let T be a polynomial ring over a field k and let J = (f, g, h)
be a homogeneous ideal of T' such that f, g, h all have the same degree. Let x,y
be new variables and set S = T[x,y|. Let

=%y, 2" f + 2yg + v°h).
16



Then
regg(S/I) > regp(T)J) + 4.
Proof. Note that S/I is finitely generated as a T-module. In fact, 2°y*(S/I) =

(T'/J)(—4) is a T-direct summand of S/I. Since S is faithfully flat over T, we
have

regg(S/1) > regr(a®y*(S/1)) = regy(T/J) + 4.

In [Cal Example 4.2.1] Caviglia showed that if T = k[z,, 29, 23, 24] and

d _d d—1 d—1
J = (217 Z9, 123 T R2Z4 )

with d > 2, then reg(T/J) = d° — 2. We set S = T'[x,y] and
I= (x?’, yP 2t ay(z 28 — 22l + szS) .

By the previous proposition we see that reg(S/I) > d*+2 for d > 2, while the
degrees of the three generators of I are 3,3, and d + 2. By [MP, Theorem 1.6]
we obtain the following result:

Theorem 7.2. Let P be the step-by-step homogenization of the Rees-like al-
gebra of the ideal I above, in the polynomial ring R (as constructed in [MP]).
Then

deg(R/P) = 32(d + 3)

reg(R/P) > d* +d+12.

In particular, the Fisenbud-Goto conjecture fails when d > 34.

Acknowledgements. We are very grateful to David Eisenbud for useful
discussions.
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