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Abstract

We analyze the risk premia embedded in the S&P 500 spot index and

option markets. We use a long time-series of spot prices and a large panel of

option prices to jointly estimate the diffusive stock risk premium, the price

jump risk premium, the diffusive variance risk premium and the variance jump

risk premium. The risk premia are statistically and economically significant

and move over time. Investigating the economic drivers of the risk premia,

we are able to explain up to 63 % of these variations.
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I Introduction

It is well known that asset price processes exhibit both smooth and discontinuous

components. A large literature, including Merton (1976), Heston (1993), Duffie

et al. (2000), Eraker et al. (2003) and Eraker (2004), makes a compelling case for

models of asset prices that include stochastic volatility as well as jumps in prices and

variance. This paper aims to shed more light on the compensation that investors

demand for their exposure to these risks.

We contribute to extant literature in two directions. First, we use a long time-

series of spot data and a large panel of option prices to estimate a stochastic volatility

model with contemporaneous jumps in returns and variance (SVCJ). We first apply

the Markov Chain Monte Carlo (MCMC) algorithm to the time-series of spot returns

in order to estimate the latent variance process and the parameters that govern

the dynamics of the S&P 500 index returns under the physical measure (P). We

then use the calibrated instantaneous variance and our option data to extract the

parameters under the risk-neutral measure (Q). In performing our estimation, we

are particularly careful to impose the theoretical restrictions discussed in Bates

(2000) and Broadie et al. (2007).1 We find strong evidence of stochastic volatility

and jumps, raising questions as to whether these sources of risks are priced.

Second, we study the equity and variance risk premia embedded in the spot

index and index option markets. We decompose the equity risk premium into the

diffusive stock risk premium (DSRP ) and the price jump risk premium (PJRP ).

Similarly, we dissect the variance risk premium into the diffusive variance risk

premium (DV RP ) and the variance jump risk premium (V JRP ). Generally, we

find that the equity and variance risk premia are mainly driven by the compensation

for jumps. Our analysis reveals important variations in the time-series of the

risk premia. Using a large dataset of macroeconomic forecasts, we construct

empirical proxies of macroeconomic expectations and uncertainty. We complement

1Bates (2000) and Broadie et al. (2007) stress that the volatility of the variance process, as well
as the correlation between the Brownians of the price and variance process, should be consistent
across both probability measures.
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these variables with the default spread (DFSPD), the term spread (TSPD) and

Corwin and Schultz (2012)’s illiquidity proxy (ILLIQ). We regress the individual

risk premia on these variables and obtain adjusted R2 of up to 63 %. Our analysis

reveals that macroeconomic uncertainty has substantially more explanatory power

than macroeconomic expectations, suggesting that time varying uncertainty has a

first-order impact on the variations in the risk premia, and thus on asset prices.

Naturally, our parametric approach may be subject to model misspecification

risk. Especially, one might wonder whether two jump components — one in the

return process and one in the variance process — are indeed necessary or whether

the model is overspecified. To assuage these concerns, we compare the SVCJ model

to two other model specifications often employed in the literature, namely the simple

stochastic volatility model (SV) and the stochastic volatility model with jumps in

returns (SVJ). We use the deviance information criterion (DIC) and the root mean

squared errors (RMSE) of option prices to compare the three models. This analysis

shows that the SVCJ model outperforms its rivals, lending more credence to our

modeling choice. We also consider alternative ways in obtaining the latent variance

and show that our findings are robust to different approaches. Finally, we assess

the explanatory power of the Baker and Wurgler (2006) sentiment index for the risk

premia and show that sentiment has a significantly negative impact on the price

jump risk premium.

Our study is linked to the financial modeling literature that seeks to capture

the dynamics of asset prices in parsimonious models. Bates (1996), Bakshi et al.

(1997), Chernov and Ghysels (2000), Eraker et al. (2003), Jones (2003), Eraker

(2004) and Kaeck (2013), among others, propose and test different models that

feature stochastic volatility, jumps in returns or jumps in both returns and variance.

Overall, these studies document the presence of stochastic volatility and jumps in

both the return and variance processes. Building on this literature, we estimate a

popular continuous-time model, the SVCJ model, to jointly study the dynamics of

the equity and variance risk premia.

Our paper also links with the literature on the variance risk premium. Carr
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and Wu (2009) and Driessen et al. (2009) investigate the market price of variance

risk of short-maturity in the equity market. Amengual (2009), Egloff et al. (2010)

and Amengual and Xiu (2014) explore the term-structure of variance risk premia.

Similar to Todorov (2010) and Bollerslev and Todorov (2011), we show that jumps

play an important role in the dynamics of the equity risk premium.

Our study also carries interesting implications for the literature that focuses

on theoretical models of asset prices. For instance, our analysis indicates that the

price jump risk premium is time-varying and makes up a large proportion of the

equity risk premium. An upshot of this result is that jumps should be incorporated

in theoretical models of asset prices. This is because, a model without jumps would

counterfactually imply that all of the equity risk premium is due to the diffusive

component of the return process.

The works of Pan (2002) and Broadie et al. (2007) are most closely related

to our study. They analyze the equity and variance risk premia in the S&P 500

option market. These studies focus on the unconditional risk premia estimated using

relatively short sample periods. We improve on these papers in several respects.

First, we analyze a longer sample that includes the recent financial crisis period

which started around the collapse of Lehman Brothers. Obtaining a longer sample

period is important in order to draw robust inferences about the time-variations

of risk premia.2 Second, we decompose the equity and variance risk premia into

their continuous and discontinuous components and explore their interconnections.

Third, we study the economic drivers of the variations in the risk premia.

Finally, our work adds to the literature on option returns. Bondarenko (2003)

reports that average put returns are too high to be reconciled with standard factor

models such as the capital asset pricing model (CAPM). Coval and Shumway (2001),

Bakshi and Kapadia (2003a) and Bakshi and Kapadia (2003b) show that simple

volatility trades such as short straddles earn as much as 3 % per week. We estimate

the distinct components of the variance risk premium and connect them to the

macroeconomy, thus offering a risk-based explanation for these large option returns.

2In comparison to our long sample period (1990–2010), Pan (2002) covers the period ranging
from 1989 to 1996.
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The remainder of this paper proceeds as follows. Section II describes our

dataset and empirical methodology. Section III discusses our parameter estimates

and analyzes the risk premia. Section IV investigates the economic drivers of the risk

premia. Section V discusses our robustness checks. Finally, Section VI concludes.

II Data and Methodology

This section presents our data and methodology. We begin by describing our spot

and options dataset. We then outline the econometric methodology used to estimate

the model parameters and associated risk premia.

A. Data

We obtain the price-series of the S&P 500 index for the period between April 1990

and December 2010 from Bloomberg. Table 1 provides descriptive statistics of the

daily percentage returns. We can see that the mean daily percentage return is

positive (0.026). The mean daily volatility is 1.167. The skewness of daily returns is

small and negative (−0.185). However, the kurtosis (12.168) is fairly high, indicating

(not surprisingly) that S&P 500 spot returns are not normally distributed. These

summary statistics are suggestive of the presence of stochastic volatility and/or

jumps in the stock index market.

Our dataset of S&P 500 futures options contains daily settlement prices for

the period from April 1990 to December 2010. S&P 500 futures options trade on

the Chicago Mercantile Exchange (CME) and follow a quarterly expiration cycle,

i.e. they expire in March, June, September and December. We process the option

dataset as follows. We discard all option contracts that mature in less than 8 days,

since they are typically associated with infrequent trading. In a similar vein, we

expunge all options with maturity greater than a year. We also discard all option

prices that are lower than five times the minimum tick size of 0.01 index points. S&P

500 futures options are of the American type. Thus, we follow Trolle and Schwartz

(2009) and convert the American option prices into European option prices using

4



  

the approach of Barone-Adesi and Whaley (1987).

Table 2 summarizes our final options dataset. We present the number of

observations organized by moneyness, defined as the ratio of the strike price over the

underlying’s price. We also split our options data into three maturity groups: short

(less than 60 days), medium (60–180 days) and long (more than 180 days) maturity

options. This table reveals that most of our dataset contains option contracts of

maturity up to 180 days.

B. Model Set-Up

Model Dynamics We consider the stochastic volatility model with contempora-

neous jumps in returns and volatility (SVCJ) of Duffie et al. (2000).3 Equations

(1)–(2) present the dynamics of the stock price under the P measure:

dSt = St(rt − δt + γt − µ̄P,sλP)dt + St

√

VtdW
P,s
t + d

(
Nt∑

j=1

Sτ
j−

(eZs
j − 1)

)

(1)

dVt = κP(θP − Vt)dt + σP,v
√

VtdW
P,v
t + d

(
Nt∑

j=1

Zv
j

)

(2)

where St is the equity index price at time t. rt denotes the riskless rate at time t. δt is

the dividend yield at t. γt is the time-varying equity risk premium. As Broadie et al.

(2007) show, γt depends, among other, on the product of the latent variance Vt and

η (see Equation (10) below). Intuitively, we expect a positive estimate of η so that

there is a positive risk-return trade-off. µ̄P,s is defined as: µ̄P,s = eµP,s+
(σP,s)2

2 − 1.

Jumps occur with constant intensity λP under the P measure. Throughout this

paper, the superscript P indicates that we are working under the physical probability

measure (P). Vt is the instantaneous variance. W
P,s
t refers to the Brownian motion

that drives the stock return process. It shares a correlation, ρP, with the Brownian

of the variance process W
P,v
t . Zs

j is the normally distributed jump size in the stock

return process, Zs
j ∼ N(µP,s, σP,s). Nt is the Poisson process that determines the

3As a robustness check, we analyze the SV and SVJ models. Section V clearly shows that the
SVCJ model outperforms both the SV and SVJ models.
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presence of jumps in the return and variance processes under the physical measure.4

κP denotes the speed of mean reversion of the variance process under the P measure.

θP is the mean-reversion level of variance under the P measure. σP,v denotes the

volatility of the variance process. Zv
j is the exponential jump size in the variance

process, Zv
j ∼ exp(µP,v).5 The jump sizes in returns and variance are assumed to be

independent.6

The dynamics under the Q measure are given by the following set of equations:

dSt = St(rt − δt − µ̄Q,sλQ)dt + St

√

VtdW
Q,s
t + d

(
Nt∑

j=1

Sτ
j−

(eZs
j − 1)

)

(3)

dVt = κQ(θQ − Vt)dt + σQ,v
√

VtdW
Q,v
t + d

(
Nt∑

j=1

Zv
j

)

(4)

where all parameters are defined as before, with the only difference that the

superscript Q replaces P, indicating that the parameters relate to the Q measure.7

As is standard in the literature, we let the jump intensity take the same value

under both probability measures: λP = λQ = λ.8 Additionally, the volatility of the

return jump size is the same across both measures: σP,s = σQ,s.9

4As in Duffie et al. (2000), the Poisson process characterizing jumps is assumed to be identical
for both the price and the variance processes. Alternatively, one could assume two independent
Poisson processes. However, the empirical results of Eraker et al. (2003) and Eraker (2004) show
that the former is a better approach.

5As discussed in Duffie et al. (2000), an exponentially distributed variance jump size has the
advantage of guaranteeing the positiveness of the variance process while still being analytically
tractable.

6The independence of jump sizes is consistent with the results of previous studies. For example,
Eraker et al. (2003) and Eraker (2004) report statistically insignificant correlations between the
two jump sizes.

7In the empirical part of the paper, we use options data related to the futures contract (rather
than the spot index). Under the risk-neutral measure, the futures return follows a process similar
to that of Equation (3), except that the drift term has to be chosen such that the expected return
on the futures contract equals zero.

8See Pan (2002) and Eraker (2004) for similar restrictions.
9We impose this restriction because it is empirically difficult to precisely estimate all parameters

in the SVCJ model. See Kaeck (2013) for a similar point. In Section V, we examine other models
of the dynamics of the stock index, including the SVJ model, where we allow the volatility of jump
returns to differ across probability measures. We find that our baseline model (SVCJ) outperforms
other models.
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Theoretical Restrictions The change of measure imposes the following theoret-

ical restrictions: (i) the product of the speed of mean reversion and the long-run

variance (Pan, 2002), (ii) the correlation between the Brownians of the return and

variance processes (Bates, 2000) and (iii) the volatility of the variance process, should

be equal under both measures (Broadie et al., 2007). Consequently, we impose these

restrictions in our estimation procedure:

κPθP = κQθQ (5)

ρP = ρQ (6)

σP,v = σQ,v (7)

C. Methodology

We now describe our two-step estimation methodology, which broadly follows that of

Broadie et al. (2007). We begin by estimating the P parameters. We then estimate

the risk-neutral parameters.

Physical Measure Following Eraker et al. (2003), we implement the MCMC

estimation approach on the time-series of index returns to estimate the P

parameters.10 The key advantage of the MCMC algorithm over other approaches,

e.g. efficient method of moments, general method of moments or maximum

likelihood, is that it allows the econometrician to extract not only the model

parameters but also the latent variables, e.g. the latent variance which we also need

for the second step of our estimation procedure as variance is a key determinant of

option prices. It also accounts for model risk and works well in high-dimensional

settings including several state variables and many parameters.

Risk-Neutral Measure In order to estimate the risk-neutral parameters, we

exploit our options data and minimize the squared distance between the model and

market implied volatilities. Minimizing the difference between implied volatilities

10We closely follow the steps outlined in Eraker et al. (2003) and use the same priors and
hyperparameters. Details are available upon request.
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(rather than option prices) presents a distinct advantage. From a purely theoretical

point of view, implied volatilities (as opposed to option prices) should not exhibit

a monotonic relationship with strike prices. Hence, the optimization does not

overweight a specific range of option contracts. Our objective function reads as

follows:

ΘQ = arg min
T∑

t=1

Ot∑

n=1

[IVt(Kn, τn, St, rt, Vt) − IVt(Θ
Q|ΘP, Kn, τn, St, rt, Vt)]

2 (8)

where Kn is the strike of the nth option. τn is the time to maturity of the nth option.

ΘP and ΘQ are the sets of physical and risk-neutral parameters, respectively. Ot

is the number of options on day t and IVt(Kn, τn, St, rt) is the annualized Black

(1976) market implied volatility. IVt(Θ
Q|ΘP, Kn, τn, St, rt, Vt) is the annualized

model implied volatility. To obtain this quantity, we first implement the option

pricing formula provided by Duffie et al. (2000) to obtain the option’s value. We then

use the option price to recover the corresponding Black (1976) implied volatility.11

For each maturity and observation date, we fit a piece-wise quadratic function

to all implied volatilities:

y = 1[x≤xo][a2(x−x0)
2+a1(x−x0)+a0]+1[x>x0][b2(x−x0)

2+a1(x−x0)+a0]+ε (9)

where y is a vector that contains the implied volatilities. x relates to the moneyness,

defined as the strike price over the spot price. x0 is the knot point of the two

quadratic functions. If there are fewer than 10 traded option contracts, we fit a

linear function to the implied volatilities.12 We then take 9 equidistant implied

volatilities in the moneyness interval ranging from 0.8 to 1.2, which we use as input

11Note that our objective function differs slightly from that of Broadie et al. (2007), who jointly
estimate the variance (Vt) and the risk-neutral (Q) parameters. This approach is computationally
demanding. The computational burden is particularly serious if the optimization is performed on
a monthly basis (as we do). By directly using the spot variance estimated under P, we are able to
eschew this difficulty and estimate the monthly Q parameters that we use to study time-variations
in the risk premia. In Section V, we perform several robustness tests, which confirm that our
findings are robust to alternative research designs.

12Our curve fitting approach closely follows that of Broadie et al. (2007). They experiment with
several other methods, e.g. piece-wise cubic, linear and piece-wise functions and find the piece-wise
quadratic (linear) interpolation to be the best when there are more (less) than 10 option prices.
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to the optimization problem described by Equation (8).13 We repeat our estimation

each month, yielding a time-series of monthly risk-neutral parameters.14,15

Risk Premia Having recovered the P and Q parameters, we then focus on the task

of estimating the risk premia.16 Similar to Broadie et al. (2007), we define the equity

risk premium as the difference between the physical and risk-neutral expectations

of the stock return:

EP
t (

dSt

St

) − EQ
t (

dSt

St

) = γt

EP
t (

dSt

St

) − EQ
t (

dSt

St

)
︸ ︷︷ ︸

ERP t

= ηVt
︸︷︷︸

DSRP t

+ (µ̄P,s − µ̄Q,s)λ
︸ ︷︷ ︸

PJRP t

(10)

ERP t ≡ DSRP t + PJRP t (11)

where ERP t denotes the equity risk premium at time t. The equity risk premium is

the sum of two components. The first component DSRP t is the diffusive stock risk

premium at time t. This is the part of the equity risk premium due to the diffusive

component of the return process. The second component, PJRP t is the price jump

risk premium at time t. It reflects the compensation related to the discontinuous

component of the return process.

The variance risk premium is obtained as follows:

EQ
t [dVt] − EP

t [dVt]
︸ ︷︷ ︸

V RP t

= (κP − κQ)Vt
︸ ︷︷ ︸

DV RP t

dt + (µQ,v − µP,v)λ
︸ ︷︷ ︸

V JRP t

dt (12)

V RP t ≡ DV RP t + V JRP t (13)

13The choice of this interval is broad enough to cover a large range of options without being
vulnerable to lightly traded deep OTM option prices, which may significantly distort the results for
the jump risk premia. We also use different moneyness ranges and obtain broadly similar results.

14In Section V, we consider different estimation frequencies and find similar results.
15It is important to point out that, from a strictly theoretical point of view, the model

parameters should be constant. As we shall see, our empirical results reveal that the parameter
estimates vary from one month to the next. This likely indicates that, although widely popular in
the empirical option pricing literature, the benchmark SVCJ model is misspecified. We thank the
referees for this remark.

16We are very grateful to our referees for several suggestions that helped to improve this section
of the paper.
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Equation (13) shows that the variance risk premium is the sum of two components:

the diffusive variance risk premium (DV RP ) and the variance jump risk premium

(V JRP ). They relate to compensations for diffusive and discontinuous movements

in the variance process, respectively.

III The Dynamics of the Risk Premia

This section discusses the dynamics of the risk premia. We first present and discuss

our parameter estimates under both probability measures. We then analyze the

sign, magnitude, and dynamics of the risk premia.

A. Parameter Estimates

Physical Measure We implement the MCMC algorithm to estimate the physical

parameters. Figure 1 plots the time-series of the annualized latent instantaneous

volatility, expressed in percentage. As one would expect, the instantaneous volatility

peaks during the crisis of 2008.17 Looking at the period leading up to 2008, we find

that the dynamics of the calibrated volatility are similar to those presented in the

top left quadrant of Figure 11 in Ignatieva et al. (2009).18,19

Table 3 presents the important parameter estimates under the P measure. The

last two columns report the coefficient estimates and standard errors for the SVCJ

17The rapid movements in the instantaneous volatility observed in September and October 2008
are interesting for two reasons. First, these large movements in the volatility will result in spikes
in the dynamics of the DSRP and the DV RP . This is because variance, i.e. the squared value of
the instantaneous volatility, enters the computation of these risk premia (see Equations (10) and
(12)). Second, in order to capture these sudden and rapid movements in the dynamics of variance,
the model would require very large estimates of the average jump size in the variance process. To
verify this, we estimate the model using all data up to (and including) December 2007. While most
parameter estimates are broadly the same, we find an average jump size in the variance process of
1.232. This is clearly smaller than the 4.231 obtained when the crisis period is included (see Table
3). We thank the reviewers for suggesting this analysis.

18This is the working paper version of Ignatieva et al. (2015). We refer to the working paper as
the plot is not included in the published version.

19It is important to point out that the sample period of Ignatieva et al. (2009) starts earlier
than ours and includes the crash of 1987. This makes a like for like comparison difficult to carry
out.
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model, respectively.20 As we can see most parameter estimates are statistically

significant. The only exception to this is η, which is imprecisely estimated. This

is consistent with the empirical literature on the elusive risk-return relationship

discussed in Andersen et al. (2002). The speed of mean reversion, κP, equals 0.019.

The positive value of this parameter implies that the variance process is stationary.

The mean-reversion level of variance, θP (0.888), is not only statistically significant

but also broadly consistent with the unconditional volatility reported in Table 1.21

Turning to the dynamics of jumps, we can see that jumps in returns are rare events,

that occur with a low probability (0.002). However, the average return jump size

(−3.600) is significantly negative.

Risk-Neutral Measure Table 4 reports the average of the monthly estimates of

the speed of mean reversion, the average return jump size, the volatility of jump

returns and the average variance jump size under the Q measure, respectively. We

report the standard errors in brackets.

We can see from the last two columns that these parameter estimates are

statistically significant. This is evidenced by the small standard errors and the

relatively large coefficient estimates. Although the signs of the parameter estimates

are consistent across probability measures, there are differences in the magnitude

of these estimates. For instance, the speed of mean reversion implied by the SVCJ

model is higher under Q than P, implying that the DVRP is negative (since variance

is positive). This result is consistent with the work of Broadie et al. (2007). We find

that the average jump size related to the variance process is higher under Q and

than under P, hinting at a positive VJRP. These observations set the scene for the

detailed analysis of the risk premia that follows.

20All parameter estimates are based on daily percentage returns. Thus, the parameters
associated with the price dynamics are in percent, whereas the parameters associated with the
variance dynamics are in percent squared.

21Note that the unconditional volatility of the SVCJ model is given by
√

θP + µP,vλP

κP .

11



  

B. Characterizing the Risk Premia

Using our P and Q parameter estimates, it is straightforward to obtain the different

risk premia (see Equations (10)–(13)). Table 5 presents summary statistics of the

risk premia. On average, we can see that both the DSRP and PJRP are positive.

Because these two risk premia make up the equity risk premium, this result implies

a positive equity risk premium of around 5.29 % per year.22 Table 5 also allows us to

ascertain which of the smooth and discontinuous components of the return process

makes the most important contribution to the equity risk premium. Using the

mean values shown in the table, we can easily see that the discontinuous component

(PJRP ) accounts for most (71.43 %) of the equity risk premium. The top Panels

of Figures 2 show that this result holds not only in an unconditional sense but

also conditionally. Indeed, we observe that the PJRP is generally higher than the

DSRP , confirming that it makes a sizable contribution to the equity risk premium.

This result is consistent with the work of Bollerslev and Todorov (2011).

Turning our attention to the components of the variance risk premium, we

notice that the DV RP is on average negative (−0.052). As previously discussed,

this reflects the fact that the speed of mean reversion is higher under the risk-neutral

measure, a finding that is consistent with the estimates of Broadie et al. (2007)

among others. The V JRP is on average positive (0.043). Taken together, these

results indicate a negative variance risk premium on average. To better understand

this result, it is helpful to study the time-series behaviour of the DV RP and V JRP .

The bottom Panels of Figure 2 show that the V JRP is generally larger (in absolute

value) than the DV RP , suggesting that most of the variance risk premium is

essentially a compensation for jumps in the variance process. The only exception

occurs in September and October 2008, when the DV RP takes extremely large

values. This is mainly due to the dramatic increase in the instantaneous volatility

displayed in Figure 1. Because the DV RP depends on the squared of the latent

volatility, we obtain very large values of the DV RP . This explains why (i) on

22To get this figure, we add together the DSRP and PJRP and multiply the result by 252 (to
annualize).
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average, the DV RP is larger than the V JRP , (ii) the skewness and kurtosis of the

DV RP are quite large (in absolute value).

Overall, this analysis shows that the risk premia are economically large and

move a lot over time. We find that jumps play an important role in the dynamics of

the equity and variance risk premia. This finding carries important implications for

theoretical models of asset prices. A realistic model should allow the price jump risk

premium and the variance jump risk premium to account for a sizable share of the

equity and variance risk premia, respectively. For instance, if one posits a long-run

risk model without any jumps, the model would counterfactually imply that jumps

play no role in the dynamics of the equity and variance risk premia. In other words,

the equity and variance risk premia in such a model are due to smooth movements

in the processes only.

C. Commonalities across Risk Premia

Up to this point, we have studied each risk premium in isolation. Naturally, one

may wonder about the comovements among the different risk premia. To tackle

this issue, we proceed in two steps. First, we compute the unconditional pairwise

correlations between the risk premia. Second, we condition our correlation analysis

on the stage of the business cycle. That is, we study the commonalities in risk

premia during expansions and recessions, separately. To identify expansionary and

recessionary periods, we use the NBER recession dummy downloaded from the St

Louis’ Federal Reserve database. Panel A of Table 6 presents the unconditional

correlation between pairs of risk premia. Panels B and C report the pairwise

correlations during expansions and recessions, respectively.

It is worth noticing the highly positive correlation between the DSRP and

the PJRP . This result is surprising because our model specification does not

introduce any mechanical relationship between the two quantities. For instance,

if one formulates a model with a time-varying jump intensity, and assumes that

the intensity of the jump depends on the latent variance (Vt), then the DSRP and

PJRP will be, by construction, correlated. This is because Vt will affect both these
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risk premia. However, our model assumes a constant jump intensity, thus making

this result somewhat unexpected. One possible explanation is that the jump size

under the risk-neutral measure is time-varying and might depend on several factors,

including Vt.
23 It is thus possible that by re-calibrating the model frequently, we are

able to pick up such time-variations. This might also explain why the correlation

between the two risk premia is broadly the same during expansions and contractions.

A similar observation emerges for the correlation between the DV RP and V JRP .24

If the risk-neutral speed of mean reversion and the jump size in the variance process

(under the risk-neutral measure) are driven by some common factors, this could

result in the negative correlation between the two components of the variance risk

premium. A challenge for future theoretical models consists in developing a realistic

model of asset returns that is able to reproduce these facts.

IV The Drivers of Risk Premia

Having estimated and analyzed the time-series of the risk premia, we now turn to

their economic drivers. We consider the following variables.

A. Data

We use the following variables to capture the variations in economic growth and

uncertainty.

Macroeconomic Expectations We obtain macroeconomic forecasts from Blue

Chip Economic Indicators (BCEI). This dataset contains a rich cross-section of

macroeconomic forecasts for the current year. We focus on the growth rate of

the real gross domestic product, the consumer price index and of housing starts.

23We rule out a one factor model because if the risk-neutral jump size has a constant exposure
to the unique factor Vt, then we would observe a perfect correlation coefficient between the DSRP

and the PJRP .
24The reader might wonder why the correlation is stable across both subsamples but

substantially lower when computed using all sample information. The reason is related to the
large spike observed in the time-series of the DV RP .
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Together, these variables cover different facets of the economy. For each economic

variable and month, we construct our proxy for macroeconomic expectations by

taking the median of all forecasts. We repeat this for all months and variables to

obtain a time-series of expectations of the growth rate of the real gross domestic

product (RGDP), the consumer price index (CPI) and housing starts (HS).

Macroeconomic Uncertainty Building on the BCEI dataset, we construct

forward looking measures of macroeconomic uncertainty in a manner analogous to

that of Pasquariello and Vega (2007). For each month and economic variable, we

compute the cross-sectional standard deviation of all forecasts and use these time

series as proxies for macroeconomic uncertainty. We denote uncertainty about real

gross domestic product, consumer price index and housing starts by URGDP, UCPI,

and UHS, respectively.

Credit and Funding Risks We supplement the macroeconomic variables with

two financial variables: the default (DFSPD) and term (TSPD) spreads. To

construct the DFSPD, we take the difference between the BAA and AAA bond

yields. We construct the TSPD as the spread between the 10-year and 2-year

Treasury yields. These data are obtained from the website of the St Louis’ Federal

Reserve.

Illiquidity We also analyze the effect of illiquidity on the different risk premia.

To proxy for illiquidity in the equity market, we implement the novel measure of

Corwin and Schultz (2012). Each day, we use daily high, low and closing S&P 500

spot prices to obtain the illiquidity measure (ILLIQ). We adjust for overnight returns

as in Corwin and Schultz (2012). We then average all the intra-month estimates to

obtain a monthly measure.

Equity Market Conditions We also use the historical mean return (RET) and

volatility (VOL), computed over a trailing window of six months, as explanatory

variables.
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B. Empirical Results

It is useful to examine the correlation structure of regressors (see Table 7). We can

see that the pairwise correlations are (in absolute value) typically smaller than 0.5.

We run both univariate and multivariate regressions of individual risk premia on the

proposed explanatory variables.25 Tables 8–11 separately report the results for each

risk premium. All regressions are based on standardized variables and Newey–West

corrected standard errors with 6 lags.26

Diffusive Stock Risk Premium Table 8 shows that the economic variables

account for 57 % of the variations in this risk premium. We notice that the

proxies for economic expectations have very little explanatory power (less than 3 %).

Once we introduce the proxy for economic uncertainty, the explanatory power rises

substantially to 33 %. We see that uncertainty about inflation has a positive and

significant impact on the DSRP . The inclusion of TSPD, DFSPD and ILLIQ further

enhances the model, as indicated by the high Adj R2 (57 %). We can also see that

the coefficients associated with DFSPD and ILLIQ are significant. The positive

coefficient estimates indicate that investors require a higher compensation for the

diffusive stock risk when credit and default risks increase.

Price Jump Risk Premium Table 9 shows that all variables collectively yield

an Adj R2 of 63 %. Starting with the fourth column from the right, we can see

that macroeconomic expectations explain around 15 % of variations in the PJRP.

RGDP and CPI enter the model with statistically significant estimates. An increase

in RGDP or CPI decreases the risk premium. This result suggests that investors

25Given the AR(1) coefficient presented in Table 5, one may wonder whether the results are
sensitive to the inclusion of the lagged value of the risk premium in the regression model. Our
untabulated analysis reveals that adding the past value of the risk premium does not materially
affect the performance of the regression model. Indeed, the explanatory power of the model is little
changed and the lagged risk premium enters the regression model with a statistically insignificant
estimate in nearly all cases. We thank the reviewers for suggesting this analysis.

26In order to assess the robustness of our regression results to the large observations recorded in
September and October 2008, we repeat our analysis using all sample observations except those of
September and October 2008. We obtained qualitatively similar results. These results are available
upon request.
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require a small compensation for bearing price jump risk when they are optimistic

about the economy. This makes intuitive sense because improvements in economic

conditions are typically associated with price jumps of smaller magnitude.

The importance of macroeconomic uncertainty is evidenced by the twofold rise

in the Adj R2, from 15 % to 38 %. Most of this increase stems from UCPI, which

boasts a significantly positive coefficient estimate. Again, this result is economically

sound. An increase in inflation uncertainty raises the premium investors require for

their exposure to price jumps.

The last regression model documents a positive and significant relationship

between historical volatility and price jump risk premium. To understand the

intuition behind this result, it is important to bear in mind that jumps tend to be

larger during volatile periods. Hence, one would expect investors to require a high

compensation for their exposure to jump risk during particularly volatile episodes

of the stock market.

Diffusive Variance Risk Premium Table 10 shows that we can explain close

to 12 % of the variations in the DVRP. The last four columns shed light on the

contribution of each set of regressors to this explanatory power. We can see that the

first three regressors, i.e. RGDP, CPI and HS, do not have a significant effect

and account for less than 1 % of variations in the DVRP. This result suggests

that macroeconomic expectations alone cannot explain the diffusive variance risk

premium satisfactorily. The next columns show the effect of macroeconomic

uncertainty on the risk premium. The explanatory power increases meaningfully.

This confirms that macroeconomic uncertainty plays a more important role than

macroeconomic expectations.

Variance Jump Risk Premium Table 11 reports our results for the VJRP.

Overall, our economic variables capture 15 % of variations in the market price of

variance jump risk. We can see that macroeconomic expectations contribute very

little to this overall result. Indeed, the Adj R2 of the regression model that includes

only the three proxies for macroeconomic expectations is negligible (0.05 %). When
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we include macroeconomic uncertainty in our regression analysis, we observe a

sharp improvement in explanatory power to 8 %, indicating that macroeconomic

uncertainty significantly affects the market price of variance jump risk. It is also

worth noticing that UCPI affects both the PJRP and the V JRP , suggesting that

investors really care about uncertainty about future inflation.

V Robustness

In this section, we investigate the robustness of our main findings. First, we address

concerns of model misspecification by comparing the SVCJ model to two other

commonly used models, i.e. the SV and SVJ models. Second, we assess the

robustness of our estimation method. Third, we examine the explanatory power

of sentiment for the risk premia.

A. Model Misspecification

Our study may be criticized on the grounds that it suffers from model misspecifica-

tion and that this misspecification may be mistaken for risk premia. To investigate

this important issue, we estimate and compare the SV and SVJ models to the SVCJ

model.

In particular, we employ the model of Heston (1993) as an alternative

specification:

dSt = St(rt − δt + γt)dt + St

√

VtdW
P,s
t (14)

dVt = κP(θP − Vt)dt + σP,v
√

VtdW
P,v
t (15)

As second alternative model, we employ a specification featuring only jumps in

the return dynamics but not in the variance process:

dSt = St(rt − δt + γt − µ̄P,sλP)dt + St

√

VtdW
P,s
t + d

(
Nt∑

j=1

Sτ
j−

(eZs
j − 1)

)

(16)

dVt = κP(θP − Vt)dt + σP,v
√

VtdW
P,v
t (17)
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Tables 3–4 report the parameter estimates. We now compare all three models

based on their DIC scores and RMSE of option prices.27

DIC Originally introduced by Spiegelhalter et al. (2002), the DIC belongs to the

family of information criteria that includes the Akaike and Bayesian information

criteria. Like other information criteria, the DIC takes into account the number of

parameters and penalizes complex models. The lower the DIC score, the better the

model.

The first row of Table 12 reports the DIC scores of the models considered.

The DIC scores of the SV, SVJ and SVCJ models are 14,672, 14,577 and 14,193,

respectively. These scores suggest that, of all three models, the SVCJ model provides

the best description of the stock index dynamics. It is followed by the SVJ model,

which achieves the second lowest score. Finally, the SV model provides the worst

fit to the data. Overall, these results are consistent with those reported in previous

studies, e.g. Eraker et al. (2003) and Eraker (2004).

RMSE We also examine the RMSE obtained after estimating the risk-neutral

parameters (see Equation (8)). Intuitively, the best model should minimize the

squared distance between the market and model implied volatilities. The bottom

row of Table 12 shows that the SV, SVJ and SVCJ models yield RMSE equal

to 8.54 %, 5.87 % and 5.78 %, respectively. This suggests that the SVCJ model

outperforms its competitors. It is followed by the SVJ and SV models, which yield

the second and third smallest RMSE, respectively.

Overall, this result echoes that of the DIC scores. The SVCJ model best

describes the dynamics of the stock and options data. This result implies that our

benchmark model, the SVCJ, is the least likely to suffer from model misspecification

risk.

27Strictly speaking, we analyze the RMSE of implied volatilities.
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B. Estimation Approach

To check the robustness of our results with respect to the estimation frequency, we

repeat our analysis at the quarterly frequency. Each quarter, we use option prices

to estimate the risk-neutral parameters. Our (unreported) results are very similar.

In particular, the quarterly average parameter estimates amount to 0.05, −9.95 and

20.37 for κQ, µQ
s and µQ

v , respectively. This is very similar to 0.05, −9.75 and 21.81

obtained at the monthly frequency.28

Second, one might also wonder what would happen if we jointly estimated

the latent variance Vt and the Q parameters in the second step, rather than directly

using the latent variance estimates provided by the MCMC algorithm.29 We address

this question by following two distinct empirical methodologies. Our first approach

(Method 1) resembles the baseline optimization approach used in the main body

of our paper. We use our MCMC spot variance to repeat the calibration described

by Equation (8) each year. We then average the yearly parameters. The second

approach (Method 2) mirrors that of Kaeck (2013). Each year, we use the options

data to jointly estimate the Q parameters and latent spot variance. We then

compute the average, across all years, of the parameter estimates. If our approach

is robust, Methods 1 and 2 should yield similar estimates.

Table 13 shows that there is very little to distinguish between the two sets

of results. This demonstrates that our main findings are robust to the estimation

methodology.

C. The Role of Sentiment

Han (2008) documents a significant relationship between investor sentiment and

option prices. This study motivates us to investigate the role of market sentiment

on the risk premia. We exploit the sentiment index of Baker and Wurgler (2006).

More specifically, we obtain the time-series of the change in the sentiment index

28Detailed results are available upon request.
29Theoretically, the values should, of course, be identical. Practically, however, Vt is estimated

so different estimation approaches may yield slightly different results.
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from Wurgler’s website.

We regress individual risk premia on our macroeconomic variables as well as

the sentiment variable of Baker and Wurgler (2006). Table 14 shows that the change

in the sentiment proxy has a statistically significant impact on the price jump risk

premium only. The sign of the coefficient estimate is also very intuitive. We can

see that an improvement in sentiment has a negative impact on the price jump risk

premium and thus results in a lower equity risk premium. This result is consistent

with the empirical evidence of Schmeling (2009) and suggests that sentiment affects

the equity risk premium mainly through the jump channel.

VI Conclusion

In this paper, we study the risk premia embedded in the S&P 500 spot and option

markets. We find that the market prices of risks are significant and economically

large. We document substantial time-variations in the risk premia. We decompose

the equity and variance risk premia into their smooth and discontinuous components.

We find that jumps play an important role in the dynamics of these risk premia.

Using several economic variables, we investigate the drivers of these time-

variations. We are able to explain a sizable share of variations in the risk premia.

Our analysis reveals that proxies of macroeconomic uncertainty capture much more

variations in the risk premia than macroeconomic expectations.
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Figure 1: Latent Volatility

This figure displays the time-series of the annualized latent instantenous volatility estimated under

the phyiscal measure. We express the volatility in percentage points per annum.
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Figure 2: The Dynamics of the Risk premia
This figure displays the time-series of the monthly risk premia. The top left panel displays the diffusive stock risk premium (DSRP ). The top right
panel shows the price jump risk premium (PJRP ). The bottom left panel shows the diffusive variance risk premium (DV RP ) and the bottom right
panel shows the variance jump risk premium (V JRP ).
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Table 1: Descriptive Statistics

This table presents the summary statistics of the S&P 500 daily percentage returns. “Mean”

reports the average return. “Std Dev” displays the standard volatility. “Min” and “Max” show

the minimum and maximum percentage return, respectively. Finally, “Skew” and “Kurt” show the

skewness and kurtosis of returns, respectively.

S&P 500

Mean 0.026
Std Dev 1.167
Min -9.470
Max 10.957
Skew -0.185
Kurt 12.168

Table 2: Options Data

This table summarizes the options dataset. “Moneyness” refers to whether the option is in-the-

money (ITM), at-the-money (ATM) or out-of-the-money (OTM). “Type” indicates whether the

option is a put or call. “Range” denotes the moneyness range, computed as the ratio of the strike

price over the underlying’s price. “Short”, “Medium” and “Long” refer to options that mature

in less than 60 days, between 60 and 180 days and in more than 180 days, respectively. The last

column reports the sum of all entries in each row. Similarly, the last row shows the sum of all

entries in each column.

Moneyness Type Range Short Medium Long Total

ITM

Call <0.94 14,566 11,612 5,432 31,610
Call 0.94–0.97 7,519 6,277 2,924 16,720
Put >1.06 9,441 10,039 5,041 24,521
Put 1.03–1.06 5,862 4,360 1,543 11,765

ATM

Call 0.97–1.00 9,622 8,699 3,289 21,610
Call 1.00–1.03 10,234 9,244 3,173 22,651
Put 1.00–1.03 8,894 6,663 2,292 17,849
Put 0.97–1.00 10,102 9,054 3,232 22,388

OTM

Call 1.03–1.06 9,698 8,184 2,731 20,613
Call >1.06 21,832 30,282 15,061 67,175
Put 0.94–0.97 9,878 9,109 3,432 22,419
Put <0.94 45,970 51,711 25,183 122,864

Total 163,618 165,234 73,333 402,185
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Table 3: MCMC Parameter Estimates
This table reports the parameter estimates obtained under the P probability measure based on S&P

500 daily percentage returns. We report the results for the SV, SVJ and SVCJ models separately.

The figures in brackets are the standard errors.

SV SVJ SVCJ

η 0.004 (0.016) 0.011 (0.017) 0.004 (0.016)
κP 0.016 (0.003) 0.015 (0.003) 0.019 (0.003)
θP 1.213 (0.144) 1.192 (0.149) 0.888 (0.102)
σP,v 0.152 (0.011) 0.146 (0.009) 0.133 (0.010)
ρP -0.684 (0.031) -0.703 (0.032) -0.684 (0.036)
λP 0.009 (0.005) 0.0025 (0.0009)
µP,s -1.385 (0.671) -3.600 (0.968)
σP,s 1.720 (0.305) 1.985 (0.399)
µP,v 4.231 (1.997)

Table 4: Risk-Neutral Parameters
This table reports the parameter estimates obtained under the Q probability measure. We report

the results for the SV, SVJ and SVCJ models. The figures in brackets are the standard errors.

SV SVJ SVCJ

κQ 0.008 (0.000) 0.092 (0.005) 0.051 (0.003)
µQ,s -5.20 (0.269) -9.75 (0.535)
σQ,v 9.23 (0.188) = σP,v

µQ,v 21.81 (1.202)
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Table 5: Summary Statistics of the Risk Premia

This table summarizes the statistics of the monthly risk premia. Each risk premium is computed

according to Equations (10)–(13). “Mean” reports the average. “Median” is the median. “Std Dev”

displays the standard volatility. “Min” and “Max” show the minimum and maximum, respectively.

Finally, “Skew”, “Kurt” and “AR(1)” show the skewness, the kurtosis and the autocorrelation

coefficient of first order, respectively.

DSRP PJRP DVRP VJRP

Mean 0.006 0.015 -0.052 0.043
Median 0.004 0.014 -0.014 0.028
Std Dev 0.009 0.021 0.378 0.047
Min 0.000 -0.032 -5.820 -0.010
Max 0.101 0.130 0.035 0.298
Skew 6.463 1.279 -14.536 2.528
Kurt 55.454 7.782 220.640 11.184
AR(1) 0.734 0.735 0.214 0.294
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Table 6: Correlations Across Risk Premia

This table reports the pairwise correlations between risk premia. The first panel shows the results

of the unconditional analysis. Panel B shows the results for the expansionary periods, as indicated

by the NBER recession dummy. Panel C reports the pairwise correlations during contractions.

Panel A: Unconditional

DSRP PJRP DVRP VJRP

DSRP 1.00
PJRP 0.63 1.00
DVRP 0.23 -0.16 1.00
VJRP -0.75 -0.16 -0.29 1.00

Panel B: Expansion

DSRP PJRP DVRP VJRP

DSRP 1.00
PJRP 0.64 1.00
DVRP 0.08 -0.30 1.00
VJRP -0.46 -0.01 -0.55 1.00

Panel C: Contraction

DSRP PJRP DVRP VJRP

DSRP 1.00
PJRP 0.68 1.00
DVRP 0.48 0.13 1.00
VJRP -0.82 -0.19 -0.58 1.00
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Table 7: Correlation Across Regressors

This table reports the pairwise correlation between explanatory variables. RGDP, CPI and HS

denote the expectations about real GDP, consumer price index and housing starts, respectively.

URGDP, UCPI and UHS are disagreement proxies surrounding real GDP, consumer price index

and housing starts, respectively. TSPD and DFSPD denote the term and default spreads,

respectively. ILLIQ refers to the illiquidity proxy of Corwin and Schultz (2012). RET and VOL

indicate the average and standard deviation of returns over a trailing window of six months,

respectively.

RGDP CPI HS URGDP UCPI UHS TSPD DFSPD ILLIQ RET VOL

RGDP 1.00
CPI 0.21 1.00
HS 0.20 0.05 1.00
URGDP -0.42 0.00 -0.04 1.00
UCPI -0.44 0.05 -0.14 0.58 1.00
UHS -0.44 0.01 -0.13 0.14 0.51 1.00
TSPD -0.42 -0.28 0.06 0.25 0.32 0.38 1.00
DFSPD -0.58 -0.25 -0.27 0.35 0.66 0.48 0.39 1.00
ILLIQ -0.17 -0.18 -0.10 0.27 0.45 0.15 0.15 0.63 1.00
RET 0.21 0.00 0.27 -0.21 -0.31 -0.19 -0.20 -0.63 -0.52 1.00
VOL -0.32 -0.27 -0.08 0.43 0.26 0.03 0.18 0.49 0.51 -0.39 1.00
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Table 8: The Determinants of the Diffusive Stock Risk Premium (DSRP)

This table reports the results of regressions of the diffusive stock risk premium on explanatory

variables. RGDP, CPI and HS denote the expectations of real gross domestic product, consumer

price index and housing starts, respectively. URGDP, UCPI and UHS refer to uncertainty around

real gross domestic product, consumer price index and housing starts, respectively. TSPD and

DFSPD denote the term and default spread variables, respectively. ILLIQ indicates the illiquidity

proxy. RET and VOL are the average and volatility of historical returns computed over a trailing

window of six months. To facilitate comparisons, we standardize all variables. T-statistics are

provided in parentheses and computed based on adjusted standard errors following the method of

Newey–West with 6 lags.

Univariate Multivariate

RGDP -0.00 -0.00 0.00 0.00 0.00
(-1.51) (-1.31) (0.58) (1.20) (1.57)

CPI -0.00 0.00 -0.00 0.00 0.00
(-0.30) (0.00) (-0.93) (0.96) (1.01)

HS -0.00 -0.00 -0.00 -0.00 -0.00
(-1.09) (-1.16) (-1.85) (-0.21) (-0.64)

URGDP 0.00 -0.00 -0.00 -0.00
(2.01) (-1.10) (-1.36) (-1.44)

UCPI 0.01 0.01 0.00 0.00
(2.26) (2.34) (2.28) (2.63)

UHS 0.00 -0.00 -0.00 -0.00
(1.16) (-1.79) (-2.35) (-2.24)

TSPD 0.00 -0.00 -0.00
(1.20) (-0.22) (-0.06)

DFSPD 0.01 0.00 0.00
(3.40) (2.00) (3.22)

ILLIQ 0.01 0.00 0.00
(3.25) (3.16) (2.96)

RET -0.00 0.00
(-2.68) (0.82)

VOL 0.00 -0.00
(2.93) (-0.01)

Adj R2 2.67% -0.27% 1.18% 4.68% 30.20% 3.02% 1.41% 34.44% 47.67% 15.16% 10.54% 2.75% 33.04% 57.09% 57.03%
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Table 9: The Determinants of the Price Jump Risk Premium (PJRP)

This table reports the results of regressions of the price jump risk premium on explanatory variables.

RGDP, CPI and HS denote the expectations of real gross domestic product, consumer price index

and housing starts, respectively. URGDP, UCPI and UHS refer to uncertainty around real gross

domestic product, consumer price index and housing starts, respectively. TSPD and DFSPD denote

the term and default spread variables, respectively. ILLIQ indicates the illiquidity proxy. RET

and VOL are the average and volatility of historical returns computed over a trailing window of

six months. To facilitate comparisons, we standardize all variables. T-statistics are provided in

parentheses and computed based on adjusted standard errors following the method of Newey–West

with 6 lags.

Univariate Multivariate

RGDP -0.01 -0.00 0.00 0.00 0.00
(-2.57) (-2.33) (0.65) (1.50) (1.64)

CPI -0.01 -0.01 -0.01 -0.00 -0.00
(-2.74) (-2.28) (-4.79) (-3.02) (-3.31)

HS -0.00 -0.00 -0.00 -0.00 -0.00
(-0.94) (-0.90) (-1.55) (-0.91) (-0.81)

URGDP 0.01 0.00 0.00 -0.00
(3.29) (0.76) (1.48) (-0.02)

UCPI 0.01 0.01 0.00 0.00
(3.96) (2.27) (1.17) (2.26)

UHS 0.01 0.00 0.00 0.00
(2.04) (0.46) (0.63) (1.20)

TSPD 0.01 0.00 0.00
(2.66) (1.16) (1.33)

DFSPD 0.01 0.00 0.00
(7.69) (3.03) (0.50)

ILLIQ 0.01 0.01 0.01
(8.06) (7.61) (6.36)

RET -0.01 -0.00
(-3.66) (-1.10)

VOL 0.01 0.01
(5.92) (4.46)

Adj R2 8.69% 8.62% 1.50% 13.09% 27.69% 7.54% 9.85% 42.51% 46.29% 22.71% 34.07% 14.46% 38.03% 58.74% 63.19%
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Table 10: The Determinants of the Diffusive Variance Risk Premium (DVRP)

This table reports the results of regressions of the diffusive variance risk premium on explanatory

variables. RGDP, CPI and HS denote the expectations of real gross domestic product, consumer

price index and housing starts, respectively. URGDP, UCPI and UHS refer to uncertainty around

real gross domestic product, consumer price index and housing starts, respectively. TSPD and

DFSPD denote the term and default spread variables, respectively. ILLIQ indicates the illiquidity

proxy. RET and VOL are the average and volatility of historical returns computed over a trailing

window of six months. To facilitate comparisons, we standardize all variables. T-statistics are

provided in parentheses and computed based on adjusted standard errors following the method of

Newey–West with 6 lags.

Univariate Multivariate

RGDP 0.01 0.02 -0.01 0.01 0.00
(0.55) (0.68) (-0.81) (0.40) (0.05)

CPI -0.04 -0.05 -0.03 -0.05 -0.06
(-1.04) (-1.00) (-1.03) (-1.39) (-1.42)

HS 0.01 0.01 -0.00 -0.00 0.01
(1.29) (0.99) (-0.33) (-0.09) (0.50)

URGDP -0.01 0.06 0.07 0.05
(-0.81) (1.71) (1.82) (1.90)

UCPI -0.09 -0.15 -0.11 -0.08
(-1.53) (-1.94) (-2.31) (-2.89)

UHS -0.03 0.03 0.02 0.02
(-1.00) (1.74) (1.29) (1.61)

TSPD -0.01 -0.02 -0.02
(-0.74) (-0.81) (-0.92)

DFSPD -0.06 0.05 -0.01
(-1.28) (0.70) (-0.17)

ILLIQ -0.11 -0.11 -0.13
(-1.40) (-1.28) (-1.33)

RET 0.02 -0.06
(1.15) (-1.28)

VOL -0.01 0.02
(-0.72) (1.12)

Adj R2 -0.36% 0.83% -0.38% -0.27% 5.61% 0.33% -0.25% 2.27% 7.57% -0.04% -0.32% 0.26% 6.90% 10.96% 11.57%
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Table 11: The Determinants of the Variance Jump Risk Premium (VJRP)

This table reports the results of regressions of the variance jump risk premium on explanatory

variables. RGDP, CPI and HS denote the expectations of real gross domestic product, consumer

price index and housing starts, respectively. URGDP, UCPI and UHS refer to uncertainty around

real gross domestic product, consumer price index and housing starts, respectively. TSPD and

DFSPD denote the term and default spread variables, respectively. ILLIQ indicates the illiquidity

proxy. RET and VOL are the average and volatility of historical returns computed over a trailing

window of six months. To facilitate comparisons, we standardize all variables. T-statistics are

provided in parentheses and computed based on adjusted standard errors following the method of

Newey–West with 6 lags.

Univariate Multivariate

RGDP 0.00 0.00 0.00 0.00 0.00
(0.18) (0.62) (0.95) (0.30) (0.35)

CPI -0.00 -0.00 -0.00 -0.01 -0.01
(-1.23) (-1.33) (-1.69) (-3.85) (-3.59)

HS -0.00 -0.00 -0.00 -0.00 -0.00
(-0.90) (-1.18) (-1.36) (-0.28) (-0.46)

URGDP 0.01 0.01 0.01 0.01
(2.28) (2.07) (2.77) (2.60)

UCPI 0.00 0.01 0.01 0.01
(1.05) (1.97) (2.15) (1.45)

UHS -0.01 -0.01 -0.01 -0.01
(-2.19) (-3.54) (-3.06) (-3.25)

TSPD -0.01 -0.02 -0.02
(-2.97) (-5.07) (-4.99)

DFSPD 0.00 0.00 0.01
(0.12) (0.67) (1.18)

ILLIQ 0.00 -0.01 -0.00
(0.28) (-1.03) (-0.64)

RET 0.00 0.00
(0.33) (0.68)

VOL 0.00 -0.00
(0.51) (-0.75)

Adj R2 -0.38% 0.39% -0.10% 2.44% 0.20% 3.13% 5.92% -0.38% -0.31% -0.24% -0.18% 0.05% 7.72% 15.53% 15.29%
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Table 12: Model Selection

This table reports the DIC scores and RMSE for the SV, SVJ and SVCJ models, respectively.

SV SVJ SVCJ

DIC 14,672 14,577 14,193
RMSE 8.54% 5.87% 5.78%

Table 13: Sensitivity to the Spot Variance Estimates

This table reports the parameter estimates obtained following two distinct strategies. Method 1 uses

the MCMC spot variance to estimate the Q parameters. Method 2 uses the options data to jointly

estimate the Q parameters and spot variance. We estimate the Q parameters each year. We then

compute the average of the yearly estimates across all years to obtain the results presented below.

Method 1 Method 2

κQ 0.044 0.048
µQ,s -8.839 -8.851
µQ,v 18.860 17.504
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Table 14: Controlling for Sentiment

This table reports the results of regressions of the risk premia on a constant, the economic variables

and a proxy for sentiment (BW ). To facilitate comparisons, we standardize all variables. All

standard errors are adjusted following the method of Newey–West with 6 lags.

DSRP PJRP DVRP VJRP

RGDP 0.00 0.00 0.00 0.00
(1.57) (1.63) (0.03) (0.39)

CPI 0.00 -0.00 -0.07 -0.01
(1.00) (-3.38) (-1.43) (-3.59)

HS -0.00 -0.00 0.01 -0.00
(-0.64) (-0.91) (0.48) (-0.37)

URGDP -0.00 0.00 0.05 0.01
(-1.43) (0.04) (1.96) (2.53)

UCPI 0.00 0.00 -0.08 0.01
(2.64) (2.21) (-3.02) (1.43)

UHS -0.00 0.00 0.02 -0.01
(-2.28) (1.14) (1.58) (-3.19)

TSPD -0.00 0.00 -0.02 -0.02
(-0.05) (1.26) (-0.94) (-4.96)

DFSPD 0.00 0.00 -0.01 0.01
(3.21) (0.44) (-0.21) (1.19)

ILLIQ 0.00 0.01 -0.13 -0.00
(3.00) (6.43) (-1.36) (-0.68)

RET 0.00 -0.00 -0.06 0.00
(0.80) (-1.19) (-1.30) (0.80)

VOL 0.00 0.01 0.02 -0.00
(0.03) (4.60) (1.06) (-0.68)

BW 0.00 -0.00 -0.04 0.00
(0.33) (-2.21) (-1.17) (1.63)

Adj R2 56.88% 64.41% 12.17% 15.96%
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