16 research outputs found

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia

    No full text
    International audienceFanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date1,2. Mutations in FANCA account for more than 60% of FA cases worldwide3,4. Clinically, FA is associated with congenital abnormalities and cancer predisposition. However, bone marrow failure is the primary pathological feature of FA that becomes evident in 70–80% of patients with FA during the first decade of life5,6. In this clinical study (ClinicalTrials.gov, NCT03157804; European Clinical Trials Database, 2011-006100-12), we demonstrate that lentiviral-mediated hematopoietic gene therapy reproducibly confers engraftment and proliferation advantages of gene-corrected hematopoietic stem cells (HSCs) in non-conditioned patients with FA subtype A. Insertion-site analyses revealed the multipotent nature of corrected HSCs and showed that the repopulation advantage of these cells was not due to genotoxic integrations of the therapeutic provirus. Phenotypic correction of blood and bone marrow cells was shown by the acquired resistance of hematopoietic progenitors and T lymphocytes to DNA cross-linking agents. Additionally, an arrest of bone marrow failure progression was observed in patients with the highest levels of gene marking. The progressive engraftment of corrected HSCs in non-conditioned patients with FA supports that gene therapy should constitute an innovative low-toxicity therapeutic option for this life-threatening disorder
    corecore