403 research outputs found
Probabilistic estimates of future changes in California temperature and precipitation usingstatistical and dynamical downscaling
Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling
The Key Role of Heavy Precipitation Events in Climate Model Disagreements of Future Annual Precipitation Changes in California
Climate model simulations disagree on whether future precipitation will increase or decrease over California, which has impeded efforts to anticipate and adapt to human-induced climate change. This disagreement is explored in terms of daily precipitation frequency and intensity. It is found that divergent model projections of changes in the incidence of rare heavy (\u3e60 mm day−1) daily precipitation events explain much of the model disagreement on annual time scales, yet represent only 0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 downscaled model projections examined here, 21 agree that precipitation frequency will decrease by the 2060s, with a mean reduction of 6–14 days yr−1. This reduces California\u27s mean annual precipitation by about 5.7%. Partly offsetting this, 16 of the 25 projections agree that daily precipitation intensity will increase, which accounts for a model average 5.3% increase in annual precipitation. Between these conflicting tendencies, 12 projections show drier annual conditions by the 2060s and 13 show wetter. These results are obtained from 16 global general circulation models downscaled with different combinations of dynamical methods [Weather Research and Forecasting (WRF), Regional Spectral Model (RSM), and version 3 of the Regional Climate Model (RegCM3)] and statistical methods [bias correction with spatial disaggregation (BCSD) and bias correction with constructed analogs (BCCA)], although not all downscaling methods were applied to each global model. Model disagreements in the projected change in occurrence of the heaviest precipitation days (\u3e60 mm day−1) account for the majority of disagreement in the projected change in annual precipitation, and occur preferentially over the Sierra Nevada and Northern California. When such events are excluded, nearly twice as many projections show drier future conditions
Seasonlity of Kawasaki Disease: A global perspective
The authors are for the Kawasaki Disease Global Climate ConsortiumBACKGROUND: Understanding global seasonal patterns of Kawasaki disease (KD) may provide insight into the etiology of this vasculitis that is now the most common cause of acquired heart disease in children in developed countries worldwide. METHODS: Data from 1970-2012 from 25 countries distributed over the globe were analyzed for seasonality. The number of KD cases from each location was normalized to minimize the influence of greater numbers from certain locations. The presence of seasonal variation of KD at the individual locations was evaluated using three different tests: time series modeling, spectral analysis, and a Monte Carlo technique. RESULTS: A defined seasonal structure emerged demonstrating broad coherence in fluctuations in KD cases across the Northern Hemisphere extra-tropical latitudes. In the extra-tropical latitudes of the Northern Hemisphere, KD case numbers were highest in January through March and approximately 40% higher than in the months of lowest case numbers from August through October. Datasets were much sparser in the tropics and the Southern Hemisphere extra-tropics and statistical significance of the seasonality tests was weak, but suggested a maximum in May through June, with approximately 30% higher number of cases than in the least active months of February, March and October. The seasonal pattern in the Northern Hemisphere extra-tropics was consistent across the first and second halves of the sample period. CONCLUSION: Using the first global KD time series, analysis of sites located in the Northern Hemisphere extra-tropics revealed statistically significant and consistent seasonal fluctuations in KD case numbers with high numbers in winter and low numbers in late summer and fall. Neither the tropics nor the Southern Hemisphere extra-tropics registered a statistically significant aggregate seasonal cycle. These data suggest a seasonal exposure to a KD agent that operates over large geographic regions and is concentrated during winter months in the Northern Hemisphere extra-tropics.published_or_final_versio
Toward mountains without permanent snow and ice
The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier- and moraine-dammed lakes will threaten downstream populations. Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice.ISSN:2328-427
Toward mountains without permanent snow and ice
The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier- and moraine-dammed lakes will threaten downstream populations. Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice
Predicting and Downscaling ENSO Impacts on Intraseasonal Precipitation Statistics in California: The 1997/98 Event
Three long-range forecasting methods have been evaluated for prediction and downscaling of seasonal and intraseasonal precipitation statistics in California. Full-statistical, hybrid-dynamical–statistical and full-dynamical approaches have been used to forecast El Niño–Southern Oscillation (ENSO)–related total precipitation, daily precipitation frequency, and average intensity anomalies during the January–March season. For El Niño winters, the hybrid approach emerges as the best performer, while La Niña forecasting skill is poor. The full-statistical forecasting method features reasonable forecasting skill for both La Niña and El Niño winters. The performance of the full-dynamical approach could not be evaluated as rigorously as that of the other two forecasting schemes. Although the full-dynamical forecasting approach is expected to outperform simpler forecasting schemes in the long run, evidence is presented to conclude that, at present, the full-dynamical forecasting approach is the least viable of the three, at least in California. The authors suggest that operational forecasting of any intraseasonal temperature, precipitation, or streamflow statistic derivable from the available records is possible now for ENSO-extreme years
River salinity variations in response to discharge: examples from the western United States during the early 1900s
Major controls on river salinity (total dissolved solids) in the western United States are climate, geology, and human activity. Climate, in general, influences soil-river salinity via salt-balance variations. When climate becomes wetter, river discharge increases and soil-river salinity decreases; when climate becomes drier river discharge decreases and soil-river salinity increases. This study characterizes the river salinity response to discharge using statistical-dynamic methods. An exploratory analysis of river salinity, using early 1900s water quality surveys in the western United States, shows much river salinity variability is in response to storm and annual discharge. Presumably this is because river discharge is largely supported by surface flow
- …