14,711 research outputs found
Three-dimensional non-LTE radiative transfer computation of the Ca 8542 infrared line from a radiation-MHD simulation
Interpretation of imagery of the solar chromosphere in the widely used
\CaIIIR infrared line is hampered by its complex, three-dimensional and non-LTE
formation. Forward modelling is required to aid understanding. We use a 3D
non-LTE radiative transfer code to compute synthetic \CaIIIR images from a
radiation-MHD simulation of the solar atmosphere spanning from the convection
zone to the corona. We compare the simulation with observations obtained with
the CRISP filter at the Swedish 1--m Solar Telescope. We find that the
simulation reproduces dark patches in the blue line wing caused by Doppler
shifts, brightenings in the line core caused by upward-propagating shocks and
thin dark elongated structures in the line core that form the interface between
upward and downward gas motion in the chromosphere. The synthetic line core is
narrower than the observed one, indicating that the sun exhibits both more
vigorous large-scale dynamics as well as small scale motions that are not
resolved within the simulation, presumably owing to a lack of spatial
resolution.Comment: accepted as ApJ lette
Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves
We provide a systematic test of empirical theories of covalent bonding in
solids using an exact procedure to invert ab initio cohesive energy curves. By
considering multiple structures of the same material, it is possible for the
first time to test competing angular functions, expose inconsistencies in the
basic assumption of a cluster expansion, and extract general features of
covalent bonding. We test our methods on silicon, and provide the direct
evidence that the Tersoff-type bond order formalism correctly describes
coordination dependence. For bond-bending forces, we obtain skewed angular
functions that favor small angles, unlike existing models. As a
proof-of-principle demonstration, we derive a Si interatomic potential which
exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording
(but no content) changed since original submission on 24 April 199
Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere
The ionization of hydrogen in the solar chromosphere and transition region
does not obey LTE or instantaneous statistical equilibrium because the
timescale is long compared with important hydrodynamical timescales, especially
of magneto-acoustic shocks. We implement an algorithm to compute
non-equilibrium hydrogen ionization and its coupling into the MHD equations
within an existing radiation MHD code, and perform a two-dimensional simulation
of the solar atmosphere from the convection zone to the corona. Analysis of the
simulation results and comparison to a companion simulation assuming LTE shows
that: a) Non-equilibrium computation delivers much smaller variations of the
chromospheric hydrogen ionization than for LTE. The ionization is smaller
within shocks but subsequently remains high in the cool intershock phases. As a
result, the chromospheric temperature variations are much larger than for LTE
because in non-equilibrium, hydrogen ionization is a less effective internal
energy buffer. The actual shock temperatures are therefore higher and the
intershock temperatures lower. b) The chromospheric populations of the hydrogen
n = 2 level, which governs the opacity of Halpha, are coupled to the ion
populations. They are set by the high temperature in shocks and subsequently
remain high in the cool intershock phases. c) The temperature structure and the
hydrogen level populations differ much between the chromosphere above
photospheric magnetic elements and above quiet internetwork. d) The hydrogen n
= 2 population and column density are persistently high in dynamic fibrils,
suggesting that these obtain their visibility from being optically thick in
Halpha also at low temperature.Comment: 10 pages, 4 figure
Parallel Mapper
The construction of Mapper has emerged in the last decade as a powerful and
effective topological data analysis tool that approximates and generalizes
other topological summaries, such as the Reeb graph, the contour tree, split,
and joint trees. In this paper, we study the parallel analysis of the
construction of Mapper. We give a provably correct parallel algorithm to
execute Mapper on multiple processors and discuss the performance results that
compare our approach to a reference sequential Mapper implementation. We report
the performance experiments that demonstrate the efficiency of our method
Approximations for radiative cooling and heating in the solar chromosphere
Context. The radiative energy balance in the solar chromosphere is dominated
by strong spectral lines that are formed out of LTE. It is computationally
prohibitive to solve the full equations of radiative transfer and statistical
equilibrium in 3D time dependent MHD simulations.
Aims. To find simple recipes to compute the radiative energy balance in the
dominant lines under solar chromospheric conditions.
Methods. We use detailed calculations in time-dependent and 2D MHD snapshots
to derive empirical formulae for the radiative cooling and heating.
Results. The radiative cooling in neutral hydrogen lines and the Lyman
continuum, the H and K and intrared triplet lines of singly ionized calcium and
the h and k lines of singly ionized magnesium can be written as a product of an
optically thin emission (dependent on temperature), an escape probability
(dependent on column mass) and an ionization fraction (dependent on
temperature). In the cool pockets of the chromosphere the same transitions
contribute to the heating of the gas and similar formulae can be derived for
these processes. We finally derive a simple recipe for the radiative heating of
the chromosphere from incoming coronal radiation. We compare our recipes with
the detailed results and comment on the accuracy and applicability of the
recipes.Comment: accepted for publication in Astronomy & Astrophysic
Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field
Aims: We study the differences between non-magnetic and magnetic regions in
the flow and thermal structure of the upper solar photosphere. Methods:
Radiative MHD simulations representing a quiet region and a plage region,
respectively, which extend into the layers around the temperature minimum, are
analyzed. Results: The flow structure in the upper photospheric layers of the
two simulations is considerably different: the non-magnetic simulation is
dominated by a pattern of moving shock fronts while the magnetic simulation
shows vertically extended vortices associated with magnetic flux
concentrations. Both kinds of structures induce substantial local heating. The
resulting average temperature profiles are characterized by a steep rise above
the temperature minimum due to shock heating in the non-magnetic case and by a
flat photospheric temperature gradient mainly caused by Ohmic dissipation in
the magnetic run. Conclusions: Shocks in the quiet Sun and vortices in the
strongly magnetized regions represent the dominant flow structures in the
layers around the temperature minimum. They are closely connected with
dissipation processes providing localized heating.Comment: Accepted for publicaton in A&
Twisted flux tube emergence from the convection zone to the corona
3D numerical simulations of a horizontal magnetic flux tube emergence with
different twist are carried out in a computational domain spanning the upper
layers of the convection zone to the lower corona. We use the Oslo Staggered
Code to solve the full MHD equations with non-grey and non-LTE radiative
transfer and thermal conduction along the magnetic field lines. The emergence
of the magnetic flux tube input at the bottom boundary into a weakly magnetized
atmosphere is presented. The photospheric and chromospheric response is
described with magnetograms, synthetic images and velocity field distributions.
The emergence of a magnetic flux tube into such an atmosphere results in varied
atmospheric responses. In the photosphere the granular size increases when the
flux tube approaches from below. In the convective overshoot region some 200km
above the photosphere adiabatic expansion produces cooling, darker regions with
the structure of granulation cells. We also find collapsed granulation in the
boundaries of the rising flux tube. Once the flux tube has crossed the
photosphere, bright points related with concentrated magnetic field, vorticity,
high vertical velocities and heating by compressed material are found at
heights up to 500km above the photosphere. At greater heights in the magnetized
chromosphere, the rising flux tube produces a cool, magnetized bubble that
tends to expel the usual chromospheric oscillations. In addition the rising
flux tube dramatically increases the chromospheric scale height, pushing the
transition region and corona aside such that the chromosphere extends up to 6Mm
above the photosphere. The emergence of magnetic flux tubes through the
photosphere to the lower corona is a relatively slow process, taking of order 1
hour.Comment: 53 pages,79 figures, Submitted to Ap
The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines
NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study
how the solar atmosphere is energized. IRIS contains an imaging spectrograph
that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II
k. Understanding the observations will require forward modeling of Mg II h&k
line formation from 3D radiation-MHD models. This paper is the first in a
series where we undertake this forward modeling. We discuss the atomic physics
pertinent to h&k line formation, present a quintessential model atom that can
be used in radiative transfer computations and discuss the effect of partial
redistribution (PRD) and 3D radiative transfer on the emergent line profiles.
We conclude that Mg II h&k can be modeled accurately with a 4-level plus
continuum Mg II model atom. Ideally radiative transfer computations should be
done in 3D including PRD effects. In practice this is currently not possible. A
reasonable compromise is to use 1D PRD computations to model the line profile
up to and including the central emission peaks, and use 3D transfer assuming
complete redistribution to model the central depression.Comment: 13 pages, 13 figures, accepted for Ap
- …
