6,479 research outputs found
Field-Induced Quantum Critical Point in CeCoIn5
The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a
function of temperature, down to 25 mK and in magnetic fields of up to 16 T
applied perpendicular to the basal plane. With increasing field, we observe a
suppression of the non-Fermi liquid behavior, rho ~ T, and the development of a
Fermi liquid state, with its characteristic rho = rho_0 + AT^2 dependence. The
field dependence of the T^2 coefficient shows critical behavior with an
exponent of 1.37. This is evidence for a field-induced quantum critical point
(QCP), occuring at a critical field which coincides, within experimental
accuracy, with the superconducting critical field H_c2. We discuss the relation
of this field-tuned QCP to a change in the magnetic state, seen as a change in
magnetoresistance from positive to negative, at a crossover line that has a
common border with the superconducting region below ~ 1 K.Comment: 4 pages, 3 figures (published version
Quantum partition noise of photo-created electron-hole pairs
We show experimentally that even when no bias voltage is applied to a quantum
conductor, the electronic quantum partition noise can be investigated using GHz
radiofrequency irradiation of a reservoir. Using a Quantum Point Contact
configuration as the ballistic conductor we are able to make an accurate
determination of the partition noise Fano factor resulting from the
photo-assisted shot noise. Applying both voltage bias and rf irradiation we are
able to make a definitive quantitative test of the scattering theory of
photo-assisted shot noise.Comment: 4 pages, 4 figure
Hamiltonian of a spinning test-particle in curved spacetime
Using a Legendre transformation, we compute the unconstrained Hamiltonian of
a spinning test-particle in a curved spacetime at linear order in the particle
spin. The equations of motion of this unconstrained Hamiltonian coincide with
the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac
brackets to derive the constrained Hamiltonian and the corresponding
phase-space algebra in the Newton-Wigner spin supplementary condition (SSC),
suitably generalized to curved spacetime, and find that the phase-space algebra
(q,p,S) is canonical at linear order in the particle spin. We provide explicit
expressions for this Hamiltonian in a spherically symmetric spacetime, both in
isotropic and spherical coordinates, and in the Kerr spacetime in
Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when
expanded in Post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner
(ADM) canonical Hamiltonian computed in PN theory in the test-particle limit.
Notably, we recover the known spin-orbit couplings through 2.5PN order and the
spin-spin couplings of type S_Kerr S (and S_Kerr^2) through 3PN order, S_Kerr
being the spin of the Kerr spacetime. Our method allows one to compute the PN
Hamiltonian at any order, in the test-particle limit and at linear order in the
particle spin. As an application we compute it at 3.5PN order.Comment: Corrected typo in the ADM Hamiltonian at 3.5 PN order (eq. 6.20
Combining dynamic relaxation method with artificial neural networks to enhance simulation of tensegrity structures
Abstract: Structural analyses of tensegrity structures must account for geometrical nonlinearity. The dynamic relaxation method correctly models static behavior in most situations. However, the requirements for precision increase when these structures are actively controlled. This paper describes the use of neural networks to improve the accuracy of the dynamic relaxation method in order to correspond more closely to data measured from a full-scale laboratory structure. An additional investigation evaluates training the network during the service life for further increases in accuracy. Tests showed that artificial neural networks increased model accuracy when used with the dynamic relaxation method. Replacing the dynamic relaxation method completely by a neural network did not provide satisfactory results. First tests involving training the neural network online showed potential to adapt the model to changes during the service life of the structure. DOI: 10.1061/�ASCE�0733-9445�2003�129:5�672
Josephson effect in a weak link between borocarbides
A stationary Josephson effect is analyzed theoretically for a weak link
between borocarbide superconductors. It is shown that different models of the
order parameter result in qualitatively different current-phase relations
General Relativistic Simulations of Slowly and Differentially Rotating Magnetized Neutron Stars
We present long-term (~10^4 M) axisymmetric simulations of differentially
rotating, magnetized neutron stars in the slow-rotation, weak magnetic field
limit using a perturbative metric evolution technique. Although this approach
yields results comparable to those obtained via nonperturbative (BSSN)
evolution techniques, simulations performed with the perturbative metric solver
require about 1/4 the computational resources at a given resolution. This
computational efficiency enables us to observe and analyze the effects of
magnetic braking and the magnetorotational instability (MRI) at very high
resolution. Our simulations demonstrate that (1) MRI is not observed unless the
fastest-growing mode wavelength is resolved by more than about 10 gridpoints;
(2) as resolution is improved, the MRI growth rate converges, but due to the
small-scale turbulent nature of MRI, the maximum growth amplitude increases,
but does not exhibit convergence, even at the highest resolution; and (3)
independent of resolution, magnetic braking drives the star toward uniform
rotation as energy is sapped from differential rotation by winding magnetic
fields.Comment: 21 pages, 11 figures, published in Phys.Rev.
Effect of antibiotics, alone and in combination, on Panton–Valentine leukocidin production by a Staphylococcus aureus reference strain
AbstractThe capacity of Staphylococcus aureus strain LUG855 to release Panton–Valentine leukocidin (PVL) in the presence of sub-inhibitory concentrations of anti-staphylococcal drugs was examined. Oxacillin enhanced PVL release 2.5-fold, while clindamycin, linezolid, fusidic acid and rifampicin were inhibitory, and vancomycin, pristinamycin, tetracycline, ofloxacin and co-trimoxazole had no effect. In combination with oxacillin, sub-inhibitory concentrations of clindamycin or rifampicin inhibited PVL induction significantly, linezolid was less inhibitory, and fusidic acid did not inhibit PVL induction by oxacillin. These data support the use of oxacillin in combination with clindamycin, rifampicin or linezolid for the treatment of PVL-positive S. aureus infections
NICI: combining coronagraphy, ADI, and SDI
The Near-Infrared Coronagraphic Imager (NICI) is a high-contrast AO imager at
the Gemini South telescope. The camera includes a coronagraphic mask and dual
channel imaging for Spectral Differential Imaging (SDI). The instrument can
also be used in a fixed Cassegrain Rotator mode for Angular Differential
Imaging (ADI). While coronagraphy, SDI, and ADI have been applied before in
direct imaging searches for exoplanets. NICI represents the first time that
these 3 techniques can be combined. We present preliminary NICI commissioning
data using these techniques and show that combining SDI and ADI results in
significant gains.Comment: Proc. SPIE, Vol. 7014, 70141Z (2008
Multiple plasmon resonances in naturally-occurring multiwall nanotubes: infrared spectra of chrysotile asbestos
Chrysotile asbestos is formed by densely packed bundles of multiwall hollow
nanotubes. Each wall in the nanotubes is a cylindrically wrapped layer of . We show by experiment and theory that the infrared spectrum
of chrysotile presents multiple plasmon resonances in the Si-O stretching
bands. These collective charge excitations are universal features of the
nanotubes that are obtained by cylindrically wrapping an anisotropic material.
The multiple plasmons can be observed if the width of the resonances is
sufficiently small as in chrysotile.Comment: 4 pages, 5 figures. Revtex4 compuscript. Misprint in Eq.(6) correcte
- …