252 research outputs found
Expectation-driven interaction: a model based on Luhmann's contingency approach
We introduce an agent-based model of interaction, drawing on the contingency
approach from Luhmann's theory of social systems. The agent interactions are
defined by the exchange of distinct messages. Message selection is based on the
history of the interaction and developed within the confines of the problem of
double contingency. We examine interaction strategies in the light of the
message-exchange description using analytical and computational methods.Comment: 37 pages, 16 Figures, to appear in Journal of Artificial Societies
and Social Simulation
Garvey-Kelson Relations for Nuclear Charge Radii
The Garvey-Kelson relations (GKRs) are algebraic expressions originally
developed to predict nuclear masses. In this letter we show that the GKRs
provide a fruitful framework for the prediction of other physical observables
that also display a slowly-varying dynamics. Based on this concept, we extend
the GKRs to the study of nuclear charge radii. The GKRs are tested on 455 out
of the approximately 800 nuclei whose charge radius is experimentally known. We
find a rms deviation between the GK predictions and the experimental values of
only 0.01 fm. This should be contrasted against some of the most successful
microscopic models that yield rms deviations almost three times as large.
Predictions - with reliable uncertainties - are provided for 116 nuclei whose
charge radius is presently unknown.Comment: 4 pages and 3 figure
Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses
Starting with a two-body effective nucleon-nucleon interaction, it is shown
that the infinite nuclear matter model of atomic nuclei is more appropriate
than the conventional Bethe-Weizsacker like mass formulae to extract saturation
properties of nuclear matter from nuclear masses. In particular, the saturation
density thus obtained agrees with that of electron scattering data and the
Hartree-Fock calculations. For the first time using nuclear mass formula, the
radius constant =1.138 fm and binding energy per nucleon = -16.11
MeV, corresponding to the infinite nuclear matter, are consistently obtained
from the same source. An important offshoot of this study is the determination
of nuclear matter incompressibility to be 288 28 MeV using
the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy.
Rev. C
NMR assignments of 1H, 13C and 15N resonances of the C-terminal subunit from Azotobacter vinelandii mannuronan C5-epimerase 6 (AlgE6R3)
The 19.9 kDa C-terminal module (R3) from Azotobacter vinelandii mannronan C5-epimerase AlgE6 has been 13C, 15N isotopically labelled and recombinantly expressed. We report here the 1H, 13C, 15N resonance assignment of AlgE6R3
Experimental Multi-state Quantum Discrimination in the Frequency Domain with Quantum Dot Light
The quest for the realization of effective quantum state discrimination
strategies is of great interest for quantum information technology, as well as
for fundamental studies. Therefore, it is crucial to develop new and more
efficient methods to implement discrimination protocols for quantum states.
Among the others, single photon implementations are more advisable, because of
their inherent security advantage in quantum communication scenarios. In this
work, we present the experimental realization of a protocol employing a
time-multiplexing strategy to optimally discriminate among eight non-orthogonal
states, encoded in the four-dimensional Hilbert space spanning both the
polarization degree of freedom and photon energy. The experiment, built on a
custom-designed bulk optics analyser setup and single photons generated by a
nearly deterministic solid-state source, represents a benchmarking example of
minimum error discrimination with actual quantum states, requiring only linear
optics and two photodetectors to be realized. Our work paves the way for more
complex applications and delivers a novel approach towards high-dimensional
quantum encoding and decoding operations
A Dirac-Hartree-Bogoliubov approximation for finite nuclei
We develop a complete Dirac-Hartree-Fock-Bogoliubov approximation to the
ground state wave function and energy of finite nuclei. We apply it to
spin-zero proton-proton and neutron-neutron pairing within the
Dirac-Hartree-Bogoliubov approximation (we neglect the Fock term), using a
zero-range approximation to the relativistic pairing tensor. We study the
effects of the pairing on the properties of the even-even nuclei of the
isotopic chains of Ca, Ni and Sn (spherical) and Kr and Sr (deformed), as well
as the =28 isotonic chain, and compare our results with experimental data
and with other recent calculations.Comment: 43 pages, RevTex, 13 figure
Signatures of the Optical Stark Effect on Entangled Photon Pairs from Resonantly-Pumped Quantum Dots
Two-photon resonant excitation of the biexciton-exciton cascade in a quantum
dot generates highly polarization-entangled photon pairs in a
near-deterministic way. However, there are still open questions on the ultimate
level of achievable entanglement. Here, we observe the impact of the
laser-induced AC-Stark effect on the spectral emission features and on
entanglement. A shorter emission time, longer laser pulse duration, and higher
pump power all result in lower values of concurrence. Nonetheless, additional
contributions are still required to fully account for the observed below-unity
concurrence.Comment: 7 pages, 3 figure
Studies of neutron-rich nuclei using the CPT mass spectrometer at CARIBU
The nucleosynthetic path of the astrophysical r-process and the resulting elemental abundances depend on neutron-separation energies which can be determined from the masses of the nuclei along the r-process reaction path. Due to the current lack of experimental data, mass models are often used. The mass values provided by the mass models are often too imprecise or disagree with each other. Therefore, direct high-precision mass measurements of neutron-rich nuclei are necessary to provide input parameters to the calculations and help refine the mass models. The Californium Rare Isotope Breeder Upgrade (CARIBU) facility of Argonne National Laboratory will provide experiments with beams of short-lived neutron-rich nuclei. The Canadian Penning Trap (CPT) mass spectrometer has been relocated to the CARIBU low-energy beam line to extend measurements of the neutron-rich nuclei into the mostly unexplored region along the r-process path. This will allow precise mass measurements (∼ 10 keV/c2) of more than a hundred very neutron-rich isotopes that have not previously been measured
- …