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Abstract

Starting with a two-body effective nucleon-nucleon interaction, it is shown that

the infinite nuclear matter model of atomic nuclei is more appropriate than the

conventional Bethe-Weizsacker like mass formulae to extract saturation properties

of nuclear matter from nuclear masses. In particular, the saturation density thus

obtained agrees with that of electron scattering data and the Hartree-Fock calcula-

tions. For the first time using nuclear mass formula, the radius constant r0=1.138

fm and binding energy per nucleon av = -16.11 MeV, corresponding to the infinite

nuclear matter, are consistently obtained from the same source. An important off-

shoot of this study is the determination of nuclear matter incompressibility K∞ to

be 288± 28 MeV using the same source of nuclear masses as input.

PACS numbers: 21.10.Dr, 21.65.+f



I. INTRODUCTION

The binding energy, saturation density and compression modulus of infinite nuclear

matter are fundamental constants of nature. Traditionally, the first two quantities termed

as saturation properties are determined from two different sources, namely the volume

coefficient av of the Bethe-Weizsacker (BW) like mass formulae and the electron scattering

data on heavy nuclei respectively. Although the Coulomb coefficient aC(= 0.6e2/r0) in

BW-like mass formulae specifies the density ρ = 3/(4πr3
0), it is not accepted as the den-

sity of nuclear matter. This is because, the corresponding radius constant r0 ' 1.22fm

obtained[1, 2] in a totally free fit is much higher than the value 1.12− 1.13 fm obtained

from the electron scattering data[3] on heavy nuclei and Hartree-Fock calculations[4] . As

yet no mass formula fit to nuclear masses has yielded a value of r0 in this range. This is

the so-called “r0− paradox”, which has been a subject of investigation[5] over the years by

many. Since, the two properties are highly inter-related, the above constrained practice

of their determination from two different sources, has been a serious discomfeature in our

understanding of nuclear dynamics. Coupled to this, the incompressibility of nuclear mat-

ter has posed a much serious problem with regard to its determination, both theoretically

and experimentally.

In this work, we report our attempt to determine all the three properties of nuclear

matter using a single model, and one kind of experimental data, namely the nuclear

masses, which are abundant in nature and are the best known properties of nuclei. We

use the infinite nuclear matter (INM) model[6] based on the generalised Hugenholtz-

Van Hove (HVH) theorem[7] of many-body theory, whose success has been well tested

through its unique ability to predict masses of nuclei far from stability[6], masses of Na

isotopes and other light nuclei, and finally through the 1986-87 mass predictions[8] of

the entire periodic table. In the formulation of INM model, it was claimed[6] that this

model is more suitable than the traditional (BW) ones to extract the properties of nuclear

matter, as it is exclusively built in terms of infinite nuclear matter at ground-state. In the

present work, we have improved the model and show conclusively, starting from two-body
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effective interaction within the energy density formalism, that the saturation properties

derived through this improved model are closer to the true properties of the nuclear matter

than those derived using BW model based mass formulae. Then this model is fitted to

the experimental masses, which yields a value of r0 to be 1.138 fm, in close agreement

with that obtained from the electron scattering data, and with the empirical value found

through many-body mean-field approaches[9]. Further, using these saturation properties

determined from the same set of data on nuclear masses, we arrive at a value of about

288 MeV for the incompressibility K∞, which is of equal fundamental importance in the

realm of nuclear physics and astrophysics.

In Sec. II, the improvements we have made in the INM model are presented. In Sec.

III, we show at a microscopic level that the improved INM model is more appropriate than

the BW-like model for the extraction of saturation properties of infinite nuclear matter

from the nuclear masses. Determination of such properties are presented in Sec. IV. In

Sec.V, the value of nuclear compression modulus is determined from the nuclear masses.

Finally, we conclude in Sec.VI.

II. THE IMPROVED INM MODEL

We recall here the essential features of the INM model[6] which we have now improved.

In this model, the ground-state energy EF (A,Z) of a nucleus(A,N,Z) with asymmetry β

is considered equivalent to the energy ES of a perfect sphere made up of infinite nuclear

matter at ground-state density with same asymmetry β plus the residual energy η, called

the local energy, which contains all the characteristic contributions like shell, deformation

etc. So,

EF (A,Z) = ES
INM(A,Z) + η(A,Z) (1)

with ES
INM(A,Z) = E(A,Z) + f(A,Z), where

f(A,Z) = aIsA
2/3 +aIC(Z2−5(3/(16π))2/3Z4/3)A−1/3 +aIssA

2/3β2 +aIcvA
1/3− δ(A,Z) (2)

denotes the finite-size effects and E(A,Z) is the energy of the infinite part. The super-

script I refers to the INM character of the coefficients. Here aIs, a
I
C, aIss and aIcv are

the surface, Coulomb, surface-symmetry and curvature coefficients. δ(A,Z) is the usual
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pairing term, given as

δ(A,Z) = +∆A−1/2 for even− even nuclei

= 0 for odd − A nuclei

= −∆A−1/2 for odd− odd nuclei

Eq.(1) now becomes,

EF (A,Z) = E(A,Z) + f(A,Z) + η(A,Z) (3)

Thus, the energy of a finite nucleus is given as a sum of three distinct parts; an infinite

part E(A,Z), a finite-size component f(A,Z) and a local energy part η(A,Z). The term

E(A,Z) being the property of infinite nuclear matter at ground-state, will satisfy the

generalised HVH theorem[7].

E/A = [(1 + β)εn + (1− β)εp]/2 (4)

where εn = (∂E/∂N)Z and εp = (∂E/∂Z)N are the neutron and proton Fermi energies

respectively. Using Eq.(3), the INM Fermi energies εn and εp can be expressed in terms

of their counterparts for finite nuclei as

εn = εFn − (∂f/∂N) |Z −(∂η/∂N) |Z; εp = εFp − (∂f/∂Z) |N −(∂η/∂Z) |N (5)

where εFn = (∂EF/∂N)Z and εFp = (∂EF/∂Z)N . Using (3) and (5), Eq.(4) is rewritten as

EF/A = [(1 + β)εFn + (1− β)εFp ]/2 + S(A,Z) (6)

where, S(A,Z) = f/A− (N/A)(∂f/∂N)Z− (Z/A)(∂f/∂Z)N is a function of all the finite-

size terms aIs, a
I
C, aIss and aIcv, which are global in nature. As discussed earlier[6], the η

terms in Eq.(6) drops out, which plays a crucial role in the success of INM model, and

whose validity has been amply demonstrated[6, 8]. It must be noted that Eq.(6) does not

contain the infinite part E as well as the η terms. Thus, through Eq.(6), the decoupling

of the finite component f from the infinite one E has been acheived. The coefficients aIs,

aIC, aIss and aIcv can be determined by fitting S(A,Z) function with the combination of
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data EF/A− [(1 + β)εFn + (1− β)εFp ]/2 obtained from the nuclear masses. We would like

to mention here that in the earlier work[6], due to the use of the expressions for Fermi

energies, εFn = EF (N,Z) − EF (N − 1, Z) and εFp = EF (N,Z) − EF (N,Z − 1), a small

contribution aa(β2− 1)/(A− 1) survives (of the order of aa/A) in Eq.(6), whereas in the

present work by using the better formulae

εFn =
∂EF

∂N
|Z=

1

2

[
EF (A+ 1, Z)− EF (A− 1, Z)

]
εFp =

∂EF

∂Z
|N=

1

2

[
EF (A+ 1, Z + 1)− EF (A− 1, Z − 1)

]
(7)

the following important improvements are acheived.

(i). The decoupling of the infinite part (asymmetry term) from the finite part in Eq.(6)

occurs upto an order of aa/A2, which can be considered perfect at the numerical

level.

(ii). The pairing term δ contained in f effectively drops out in Eq.(6), thereby rendering

the determination of other coefficients with greater accuracy due to less correlation.

(iii). The exchange Coulomb term of the standard form O(Z4/3A−1/3) (2) exactly cancels

in Eq.(6). This cancellation gives rise to a more reliable determination of INM

saturation density through aIC.

(iv) The other factors which might affect the determination of density such as proton-

form-factor [O(Z2/A)] and Nolen-Schiffer anomaly [O(βA), referred to as charge-

asymmetry energy] also cancel exactly.

Thus all the finite-size coefficients contained in S(A,Z), which are global in nature, are

determined from nuclear masses by a fit to Eq.(6). Now, of the three distinct parts of the

energy EF of a finite nucleus(3), the infinite part E and the local energy part η remain to

be determined. The infinite part E must satisfy the generalised HVH theorem (4), whose

solution is of the form,

E = −aIvA+ aIaβ
2A (8)
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where aIv and aIa are the global parameters which can be identified as volume and symmetry

coefficients corresponding to INM. Using (5) and (8) in the right and left hand sides of

Eq.(4) respectively, one obtains

−aIv + aIaβ
2 =

1

2

[
(1 + β)εFn + (1− β)εFp

]
−

[
N

A

∂f

∂N
|Z +

Z

A

∂f

∂Z
|N

]
(9)

where the contribution from the local energy part( of the order of η/A) is neglected, which

in the limit of large A goes to zero. Since f is known from Eq.(6), the above equation

can be used to determine the two parameters aIv and aIa with the combination of data[
(1 + β)εFn + (1− β)εFp

]
/2 obtained from nuclear masses. Thus all the global parameters

are determined essentially in two fits: Eq.(6) determines the finite-size coefficients like aIs,

aIC etc and Eq.(9) determines the INM coefficients aIv and aIa. Since the present study

is intended for the determination of the properties of nuclear matter, we do not discuss

the determination of η and consequently the masses, the details of which can be seen in

Refs.[6, 8]

III. IMPROVED INM MODEL VERSUS BW MODEL

In this section, we would like to make a comparative study of the improved INM

model and BW model, in regard to their suitability for the determination of saturation

properties of infinite nuclear matter from nuclear masses.

As noted in the introduction, it has not been possible to determine both the energy

and density of infinite nuclear matter in the BW model based mass formulae. Further, it

has been hoped only that the volume coefficient determined in the BW model corresponds

to nuclear matter at ground state. On the other hand, in the INM model, this fact has

been ensured by the explicit use of HVH theorem, which is valid only at the ground-state

of infinite nuclear matter. Since in this model, the binding energy of a nucleus is written

in terms of the properties of INM, it is expected that the INM model is well equipped to

extract infinite nuclear matter properties from nuclear masses. We demonstrate this by

predicting the a priori known INM properties for a given effective interaction.

In this regard, we make use of the extended Thomas-Fermi(ETF) calculation[10] of

nuclear binding energies with Skyrme-like forces, which over the years has been firmly

established. In such calculations, one obtains the smooth part of the energy corresponding
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to the liquid-drop nature of nuclei. This smooth part, hereafter referred to as macroscopic

part describes the energy ES
INM of the INM sphere as defined in Eq.(1). For the purpose

of making a comparative study of the INM model and the BW-like model, the appropriate

BW mass formula is

EBW = −aLvA+ aLsA
2/3 + aLC(Z2 − 5(

3

16π
)2/3Z4/3)A−1/3 + aLaβ

2A

+aLssA
2/3β2 + aLcvA

1/3 − δ(A,Z) (10)

In the case of the ETF calculations, nuclear curvature coefficient comes out to be about

10 MeV as against the BW-like mass formula fit to real nuclei, which gives a value close

to zero. For this reason, we have included higher-order terms like curvature and surface-

symmetry terms in both the INM and BW models.

The macroscopic or the ETF nuclear ground state energies used here for the compar-

ative study of the INM and BW models are taken from the calculations of Aboussir et

al[11]. In their calculation, they used a generalised Skyrme force SkSC4 of the form

vij = t0[1 + x0Pσδ(~rij)]

+ t1(1 + x1Pσ)[p2
ijδ(~rij)

2 + h.a.]/2h̄2

+ t2(1 + x2Pσ)~pij · δ(~rij)~pij/h̄
2

+ (t3/6)(1 + x3Pσ)[ρqi(~ri) + ρqj(~rj)]
γδ(~rij)

+ (i/h̄2) W0(~σi + ~σj) · ~pij × δ(~rij)~pij .

Then, the macroscopic part of the total energy for a given nucleus is calculated using

the energy density formalism, i.e. E =
∫
E(~r)d3r, where E = τ (~r) + v(~r). The potential

energy density v is derived using the two-body force given above. For the kinetic part τ ,

they use the full fourth order ETF kinetic functional[10]. It must be noted that realistic

nuclear ground state energies contain shell effects. To incorporate this characteristic

feature in a self-consistent way, a Hartree-Fock calculation is performed for the same

generalised Skyrme force. Now, using the single particle states obtained within the HF

approximation, the shell corrections can be calculated by directly making use of the

Strutinsky procedure. Then, the total energy is given as the sum of the macroscopic part

and these shell corrections.
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We have made an exhaustive study using those macroscopic energies provided by them

for 1492 nuclei. We fitted both the INM formulae given by (6) and (9) and the BW one by

(10) to the above macroscopic part of the nuclear masses to determine the corresponding

global paramters. The results so obtained, together with their respective errors, are given

in Table I. The values obtained directly by Aboussir et al with the SkSC4, force performing

nuclear matter and semi-infinite nuclear matter calculations for the various coefficients

(hereafter referred to as exact values) are also presented in Table I. It is gratifying to find

that the values obtained in the INM fit for the principal coefficients like aIv, a
I
s and aIC agree

better with the exact values, compared to that of the BW fit. The symmetry coefficient

aIβ agrees reasonably well with the exact value, although somewhat inferior to the BW

value. Even though the agreement of the higher-order terms like surface-symmetry and

curvature in the BW-fit agree better, it must be noted that, because of correlations

amongst the coefficients, they significantly affect the principal term like surface, and to

a lesser extent the other ones also. In case of the INM fit, since the infinite and finite

parts are determined in two separate fits, the principle coefficients are not influenced by

the higher-order terms. In any case, these two coefficients contribute insignificantly in

real nuclei, and are normally ignored. Thus, the saturation properties of nuclear matter,

which are a priori known for a given effective interaction like SkSC4 is relatively well

reproduced by the INM model than the BW-like model. This gives us more confidence in

the INM model in extracting real saturation properties from experimental nuclear masses

which is done in the next section.

The success of the INM model over that of the BW-like model is essentially due to the

following. As also discussed in Ref.[6], the BW-like mass formulae use only the average

property of nuclear matter, namely the average energy per nucleon. However, as demon-

strated by Hugenholtz-Van Hove[12], an interacting Fermi system has an additional prop-

erty namely the single-particle property. Such a system has one true single-particle state

i.e. Fermi state, which has infinite life time, while other low lying ones are metastable.

In other words, the lifetime of the single partcle state approaches infinity in the limit

k −→ kF . This important property is additionally taken into account in the INM model,
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which is not present in BW-like mass formulae.

IV. DETERMINATION OF NUCLEAR MATTER SATURATION PROPERTIES

Before coming to the actual determination of the various parameters of the INM model,

and thereby the saturation properties of nuclear matter, it is essential to assess the relative

importance of the possible higher-order terms, which is somewhat different in this model.

The two saturation properties, namely the density ρ∞ given by aIC and the volume

energy aIv are determined in two different fits; Eqs.(6) & (9) respectively. The first fit

determines the crucial quantity aIC; and hence, it is imperative that we analyse the role of

other finite-size effects which may influence the determination of the saturation properties.

The finite-size terms which are directly related to the Coulomb effect are: exchange

Coulomb, proton-form-factor correction and charge-asymmetry energy. It may be recalled

here that in the INM model, the binding energies and Fermi energies are used in the

particular combination, EF /A = [(1 + β)εFn + (1 − β)εFp ]/2, in Eq.(6), as dictated by

the HVH theorem. As a result, the above stated three effects exactly cancel in Eq.(6)

rendering a clean determination of aIC, and hence the density ρ∞. This is indeed a very

fortunate situation.

The other two higher-order terms which may indirectly affect the value of aIC are the

curvature aIcv and surface-symmetryaIss coefficients. In real nuclei, the curvature coefficient

comes out to be nearly zero, and is normally not included. So, we have dropped it. In

regard to the surface-symmetry coefficient aIss, it has been recoganised that its value is

somewhat difficult to determine from nuclear masses. Even at the theoretical level, the

value of aIss determined[10] from various effective interactions differ widely. Further, in the

modern BW-like mass formulae[13, 14], this coefficient is fixed from considerations other

than the ground-state nuclear masses, such as fission barrier heights. Since, in the present

study, we address ourselves to the determination of the properties of INM at ground-state,

it is essential that we only use the ground-state masses, and not any other property which

may drift the system from the ground-state and jeopardize the determination of aIv and

aIC. Therefore, in the present context, it is proper that the important coefficients are

treated as free parameters to be fixed by nuclear masses through Eq.(6).
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But, fortunately, the surface-symmetry coefficient aIss cancels to a major extent (∼

66%) due to the particular combination of data used in Eq.(6). Although this does

not fully cancels like the exchange Coulomb, protron-form-factor correction terms etc, aIss

being a second-order term, such cancellation renders it relatively insignificant as compared

to aIs. At numerical level, it may be considered to be virtually cancelled. Nevertheless,

since our main goal is to determine the saturation properties of nuclear matter, which are

of fundamental importance, we are anxious to check if any semblance of survival of aIss

term can affect the results.

Hence, we carried out calculations retaining this term as a free paramter in our fit to

Eq.(6). It is found that while the values of the other coefficients remain almost unaltered,

the value of aIss widely varies from -30 MeV to -11 MeV with accompanied error of about

50-100% as number of data varies from 1085 to 1371. This fact is also true when one uses

presuppossed values for aIss, while other coefficients are being fitted to the 1371 masses. As

the value of aIss is varied from -10 MeV to -30 MeV, it was found that χrms shows a mini-

mum at aIss ∼ −12MeV. However, this optimum value of aIss fluctuates with the variation

of the number of data, resulting in no definite value. These two features are reminiscent

of its insignificant presence in Eq.(6). Hence we have omitted this term. The same is

true also for the curvature term. Therefore, the optimum representation for the finite-size

function f(A) defined in Eq.(1) is f(A,Z) = aIsA
2/3 + aIC(Z2 − 5(3/(16π))2/3Z4/3)A−1/3.

Now coming to the actual determination of the saturation properties of INM, we use

all the nuclear masses with experimental error ≤ 60 keV from the recent mass table of

Wapstra and Audi[15]. There are 1371 cases, which have been used in our study. As

mentioned earlier the universal parameters in this model are determined in a two-step

process. In the first step, we determine the finite-size coefficients aIC and aIs by making a

least-square fit to Eq.(6) using all the 1371 masses. Then these parameters so determined

are further used in the second step to obtain the coefficients corresponding to the infinite

part aIv and aIβ , by a fit to Eq.(9) using the same set of data. The χrms obtained for

these two fits are 371 keV and 372 keV respectively, which are substantially lower than

the corresponding ones 460 keV and 506 keV obtained in the earlier study[6, 8]. The
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lowering of χrms is almost entirely due to the improvements made in the model, and not

as the result of the use of recent masses. To check the goodness and the stability of the

parameters obtained in our fits, we have carried out five sets of calculations by varying

the number of data randomly considered through out the mass table, choosing them on

the basis of experimental error ranging from 20 keV to 60 keV, and these are presented

in Table II. One can clearly see that almost all the the four parameters are quite stable

inspite of widely varying data. Especially remarkable is the stability of the two crucial

nuclear parameters namely , the Coulomb coefficient aIC, and and the volume coefficient

aIv. It is satisfying to note that the degree of stability of these two important parameters,

in which we are specifically interested, is relatively better than in aIs and aIβ. The final

values obtained for these two coefficients with maximum number of data (1371 nuclei),

and the corresponding values for r0 and ρ∞ are:

aIv = 16.108MeV and aIC = 0.7593MeV

r0 = 1.138fm and ρ∞ = 0.1620fm−3.

We quote no errors for our parameters as they are firmly determined, say with errors less

than 1%. The saturation properties aIv = 18.335 MeV and aIC = 0.841 MeV, determined

earlier[6] are inaccurate due to the use of the expressions εFN = EF (N,Z)−EF (N − 1, Z)

and εFP = EF (N,Z)−EF (N,Z−1) for finite nuclei Fermi energies. It is indeed remarkable

that the saturation densityρ∞ = 0.162fm−3 and the corresponding r0 = 1.138fm found

here agree quite well with that obtained from the fit of electron scattering data. This

value of r0 is also close to 1.13 fm obtained in the HF studies, which has been widely

accepted in literature[4]. It may be noted that our value of r0 is quite similar to the value

1.140±.005 obtained from the fit of nuclear charge radii[9] extracted from the recent

electron scattering data[16]. Thus, the two important ground-state properties,i.e av and

ρ∞ which are inter-related, are consistently determined from one kind of data using a

single model.

V. INCOMPRESSIBILITY OF NUCLEAR MATTER

To determine K∞, we note that INM model determines binding energy per nucleon

av and saturation density ρ∞ at ground-state. The BW model based mass formulae give
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the value of aLv at a different density ρo corresponding to their aLc , since they do not have

any ingredient to ensure that these parameters pertain to nuclear matter at ground-state.

Hence, using the values of av and densities from INM model as well as from BW formula,

one can determine K∞ using the relation

aIv(ρ∞) + (K∞/18)(ρo/ρ∞ − 1)2 = aLv (ρo) (11)

as shown in Ref.[17].

In order to determine the optimum number of parameters in the BW mass formula

given by Eq.(10), we have carried out least-squares fit with varying number of parameters,

the results of which are presented in Table III. We have used the same 1371 nuclear masses

mentioned in our earlier section. It can be seen that the values of the principal five

coefficients are not affected when the surface-symmetry aLss and curvature aLcv terms are

successively included. Hence, the aLss term is well supported and should be retained. The

curvature term, in spite of its smallness and relatively large error, can be included as it

does not affect the leading terms much. However, the inclusion of the Gauss curvature aLgc

term, the next higher-order term in the model, completely destabilises the fit by violently

disturbing the leading order coefficients. The surface coefficient has even become negative.

This may be due to the very small value[13, 14] of this term aLgc, which is of the order of

6 MeV.

Quite importantly, the above result is contrary to the common belief that the inclusion

of more and more higher-order terms in a liquid-drop model like expansion would result in

progressively refined values of the leading order terms. Therefore, one should be judicious

in retaining higher-order terms in such models. In the present study, we consider Eq.(10)

having six parameters to be the optimum representation, where we have dropped the

curvature term as it comes out to be nearly zero.

With this view, we carried out a least-square fit to Eq.(10) (without the curvature

term) using the same 1371 masses. As in the case of INM model calculation, we have

varied the number of data to arrive at stable values of aLv and aLC, with similar accuracies

of second and third decimal places respectively, since the value of K∞ is sensitive to these

values. The results are given in Table IV. Now, K∞ is computed using these values in
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Eq.(11) together with the values of aIv and aIC from Table II for the corresponding set of

data, and are presented in the last column of Table IV. It is remarkable that inspite of

variation of the number of input data ranging from 1085 to 1371, the value of K∞ comes

out to be in between 288 and 305. The average value thus obtained in Table IV is about

294 MeV which is very close to 288 MeV obtained with the maximum number of data

used in the fitting procedure, which futher substantiates the stability of our result with

respect to the variation of data.

We then attempt to get an estimate of the error in this value of K∞ arising out of

the limitations of the model, which may be due to the inclusion/non-inclusion of higher-

order terms like curvature, exchange Coulomb and proton-form-factor. The results of

our calculation of K∞ with inclusion/non-inclusion of these three effects are presented in

Table V. We have calculated the error χ using the expression χ2 = 1
N

ΣN
i=1(Ki

∞ −K
opt
∞ )

2
,

where Kopt
∞ = 288 MeV, N = 5 and i stands for the five values, other than Kopt

∞ , tabulated

in Table V. The error thus calculated comes out to be 28 MeV.

The recent BW model based mass formulae usually use presupposed value of r0 deter-

mined from other considerations. The one which treats r0 as an adjustable parameter and

more or less looks similar to Eq.(10) is by Myers and Swiatecki[1], where r0 is determined

by using the data on both the nuclear masses and fission barriers. Using their values of

av and the density, and the present values of INM, we obtain K∞ to be about 299 MeV.

Hence, we would like to firmly state that, if one allows r0 as a free parameter in the fit to

nuclear masses, one would invariably arrive at a value of about 288± 28 MeV for K∞.

VI. CONCLUSIONS

In conclusion, we have improved the INM model by using better Fermi energies for

neutron and proton, which has resulted in a cleaner decoupling of the finite-size effects and

the INM part of the ground-state energies of nuclei. Unlike in the BW-like mass formulae,

the Coulomb related higher-order terms such as exchange Coulomb, proton-form-factor

correction and charge-asymmetry energy cancel exactly, rendering accurate determination

of the most important quantity, namely the saturation density. More importantly, we

have demonstrated at a fundamental level starting with effective two-body interaction,
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the appropriateness of the INM model over that of the BW-like models to determine the

ground-state properties of INM.

The saturation density ρ∞ and binding energy per nucleon av of nuclear matter, the

two highly inter-related quantities, are extracted consistently for the first time from a

single source, i.e. nuclear masses, through a mass formula. It is particularly satisfying to

find that the radius constant corresponding to ρ∞ determined here agrees quite well with

that obtained from electron scattering data and Hartree-Fock calculations. These have

been possible because of taking into account additionally the single particle property of

the interacting Fermi system through the use of the generalised HVH theorem in the INM

model. Thus, the r0− anomaly is resolved here satisfactorily.

An important offshoot of this study is the determination of the value of nuclear matter

incompressibility starting from nuclear masses, which are the best measured and most

abundant data in nuclear physics. The value so obtained for K∞ is 288± 28 MeV. We

finally commement that inclusion of suface-symmetry term ass
I leads to fluctuation of

the value of K∞ to a larger side of the above value.
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Table Captions

Table I. Values obtained for the global parameters(Eqs. 6,9-10) in the infinite nuclear

matter(INM) model and Bethe-Weizsacker(BW) mass formula fit using the macroscopic

part of nuclear energies(see text). Exact values determined directly using INM and semi-

INM calculations are also given. All quantities are in MeV.

Table II Values obtained for the global parameters( Eq. 6,9) in the present study using

the experimental data[15] on nuclear masses are given for the various sets of data. All

quantities are in MeV.

Table III Values obtained for the parameters(Eq. 10) of BW model using the experi-

mental data[15] with varying number of higher order terms in the model (see text). All

quantities are in MeV.

Table IV Same as Table II, but using a Bethe-Weizsacker like mass formula. Values

obtained for incompressibility K∞ using these in Eq.(11) together with the values from

Table III for the corresponding set of data are given. All quantities are in MeV.

Table V Values of K∞ obtained with inclusion/non-inclusion of higher-order effects like

curvature aLcv, proton-form-factor (p.f.f.) and exchange Coulomb. INM4 stands for INM

model mass fit with 4 parameters, namely aIv, a
I
s, a

I
a and aIC. And, BW6 stands for BW

model fit with 6 parameters, the two additional parameters in this case are the pairing ∆

and surface-symmetry aLss terms.
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Table I

Parameters Exact Values INM BW

av 15.87 15.925 14.769

aC 0.757 0.7360 0.6945

as 17.3 18.10 11.15

aa 27.0 29.80 25.41

ass -16.0 -31.37 -17.77

acv 11.1 5.06 16.43

Table II

No. of nuclei aIv aIC aIs aIa

1085 16.101 0.7592 19.18 24.65

1191 16.115 0.7596 19.25 24.56

1252 16.112 0.7589 19.23 24.66

1294 16.096 0.7572 19.23 24.32

1371 16.108 0.7593 19.27 24.06
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Table III

No. of Para. aLv aLs aLa aLC ∆ aLss aLcv aLgc

5 -15.80 18.4 23.0 0.733 11.9

6 -15.64 18.2 26.6 0.713 11.2 -22.3

7 -15.48 17.2 26.3 0.707 11.2 -21.9 1.5

8 -12.66 -10.6 21.7 0.651 10.7 -7.9 102.7 -127.3

Table IV

No. of nuclei aLv aLC K∞

1085 15.648 0.7142 291

1191 15.640 0.7134 290

1252 15.651 0.7141 297

1294 15.634 0.7128 303

1371 15.635 0.7131 288
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Table V

Model Set K∞

With Exc. Coul. INM4 & BW6 288

INM4 & BW6+aLcv 302

INM4+p.f.f. & BW6 + p.f.f. 326

Without Exc. Coul. INM4 & BW6 303

INM4 & BW6+aLcv 309

INM4+p.f.f. & BW6 + p.f.f. 330
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